
-A186 L25 A ENERALIZOTION OF ORDER STATISTIC
FILTERS: THE 1

ALPHA-TRINNED LINEAR FILTERMU AIR FORCE INST OF TECH
*RIGHT-PRTTERSON AFB OH D I RIDER 1967

UNCLffRSSIFIEDAFIT /NR/NRB?±6±TF/G12/3 NL

fl' M.0 LU V

MICROCOPY RES4ILUTIO)4 TEST CT4

-*UW~ WKAI OfSTANDIRM "114

IF. *r6 rE

UINCL.AS~S I FIED
SECURITY CLASSIFICATION OF THIS PAGE (When Doata ntered), READ INSTRUCTIONS

REPORT DOCUMENTATION PAG BEFORE COMPLETIN(; FORM

. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER."AFIT/CI/NRTIL ., b,.87-101T

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

A Generalization of Order Statistic Filters: THESISIt%%t~A fl0
The a-Trinned Linear Filter

6. PERFORMING 01G. REPORT NUMBER

7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(s)

Douglas B. Rider

In 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AFIT STUDENT AT:
AREA & WORK UNIT NUMBERS

University of Washington

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AFIT/NR 1987
WPAFB OH 45433-6583 13. NUMBER OF PAGES

172
14. MONITORING AGENCY NAME & ADDRESS(iI different from Coritrollind Office) IS. SECURITY CLASS. (of this report)

UNCLASS IFIED
ISa. DECLASSIFICATIONOOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of chis Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED D T ICS ELECTE

NOV2 0197

17. DISTRIBUTION STATEMENT (of the abstract enterd in Block 20. If different from Report) C14

APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 EWOLAVER
Dean for Research and

Professional Development
AFIT/NR

It. KEY WORDS (Continue on reverese side if necessary and Identfy by block number)

20. ABSTRACT (Continue an reverse aide If neceasary and Identify by block number)

ATTACH ED

D FORM 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (nhen Date Snteord)

1? 7, 0~ 163

A Generalization of Order Statistic Filters:

The a-Trimmed Linear Filter

by

DOUGLAS B. RIDER

A thesis submitted in partial fulfillment

of the requirements or the degree of

Master of Science in Electrical Engineering

University of Washington

1987

Approved by

Program Authorized
to Offer Degree -

Da?7A?-7

In presentin this thesis in partial fulfillment of the requirements

for a Master s dree at the University of Washington, I agree that
the Library shall make its copies frely available for inspection. I
further agree that extensive copying of this thesis is allowable only
for scholarly purposes, consistent with 'fair use* as prescribed in
the U.S. C6pyight Law. Any other reproduction for any purposes
or by any means shall not be all6wed without my written
permission.

SignatW4 2

NTIS C A&

F .Ji'. .:...-- TIC

copy

INSPECTED

6 '

ex~

TABLE OF CONTENTS

Page

List of Figures iv

List of Tables vii

List of Symbols and Abbreviations viii

Nomenclature x

I. Introduction/Scope of This Research I

II. The Order Statistic Filter (OSF) 4

L Filters 4

M Filters 5

III. The Generalized Order Statistic Filter (GOSF) 9

Definition 9

The a-Trimmed Linear Filter 11

Gain 11

IV. Performance Evaluation 14

Performance Measures 14

Frequency Selectivity 14

Transfer Functions 15

Outlier Resistance 17

Simulation Approach 19

V. Results 22

Frequency Selectivity 22

Effects of Filter Length 23

Effects of Filter Rolloff 32

Symmetry Properties 36

Page

Filter Gain 42

Overall Frequency Performance 44

Outlier Resistance 46

Visual Evaluation 47

NMSE Comparison 69

VI. Summary, Future Research and Conclusions 79

Summary 79

Future Research 80

Optimizing the Coefficients 80

IIR Filtering 80

Modified Trimmed Linear Filter (MTL) 81

Conclusions 82

Bibliography 84

Appendix A: Calculation of Transfer Functions 85

Random Number Generation 86

Window Selection 89

Histogram Distribution 90

Error Calculation 99

Appendix B: Computer Filter Model 105

Model Structure and Language Selection 106

Program Set Description 107

Appendix C: Set of Linear Filters Used 110

Appendix D: Program Listings 130 t

iii

11o1I e e

LIST OF FIGURES

Number Page

1. (x) for a STM Filter 6

2. Generalized Order Statistic Filter 9

3. a-TL BPF2500s L31 Transfer Functions 25

4. a-TL BPF2500s L63 Transfer Functions 26

5. a-TL HPF3500 L31 Transfer Functions 27

6. a-TL HPF3500 L63 Transfer Functions 28

7. a-TL BPF2500s L31 Transfer Functions plus Ideal

Frequency Response 30

8. a-TL BPF2500s L63 Transfer Functions plus Ideal

Frequency Response 31

9. a-TL BPF2500 L31 Transfer Functions plus Ideal

Frequency Response 34

10. a-TL BPF2500 L31 Transfer Functions 35

It. a-TL LPF300 L31 Transfer Functions plus Ideal

Frequency Response 37

12. ca-TL LPF300 L63 Transfer Functions plus Ideal

Frequency Response 38

13. a-TL LPF1500 L15 Transfer Functions plus Ideal

Frequency Response 40

14. a-TL HPF3500 L15 Transfer Functions plus Ideal

Frequency Response 41

15. Gain Factor for a-TL BPF2500s 43

16. Gain Factor for a-TL BPF2500 44

115
ia m 6, "or_

Number Page

17. First Sidelobe Level of ac-TL BPF2500s 45

18. SIGIG - signal i + noise -N(0, 0.2) 48

19. SIG 1 - signal I + noise -L(0,0.5) 49

20. SIGIIG - SIGIl + noise -N(0, 0.1) 50

21. SIG1G Filtered by Mean 9 52

22. SIGIG Filtered by Median 9 53

23. SIGIG Filtered by a-TM 9T6 54

24. SIGiG Filtered by LPF300 L9 55

25. SIGIG Filtered by a-TL LPF300 9T6 56

26. SIGIG Filtered by LPFi5OO L9 57

27. SIGIG Filtered by a-TL LPF1500 9T6 58

28. SIGIl Filtered by Mean 9 59

29. SIG Filtered by a-TM 9T6 60

30. SIG Filtered by Median 9 61

31. SIGhl Filtered by LPF300 L9 63

32. SIG1 Filtered by a-TL LPF300 9T6 64

33. S1Gl Filtered by LPF1500 L9 65

34. SIG Filtered by a-TL LPF1500 9T6 66

35. Results of SIGI G Filtered by Median 9 and

ca-TL LPF300 9T8 67

36. SIG1G Filtered by a-TM - NAE 71

37. SIGIG Filtered by a-TM - NMSE 71

38. SIG3G Filtered by a-TM - NMSE 72

39. SIG1G Filtered by a-TL - NMSE 73

40. SIG3G Filtered by a-TL - NMSE 73

V

Number Page

41. SIG3I Filtered by a-TM - NMSE 75

42. SIG3I Filtered by a-TL - NMSE 76

43. SIG2G Filtered by a-TL - NMSE 77

44. SIG21 Filtered by a-TL - NMSE 77

Al. Autocorrelation of 2048 Gaussian Samples 91

A2. Transfer Function of BPF2500s L31 (linear scale) 94

A3. Histogram of 500 Values of Sample 91 95

A4. Histogram of 500 Values of Sample 92 96

A5. Histogram of 500 Values of Sample 93 97

A6. Histogram of 500 Values of Sample 94 98

A7. 80% Confidence Interval for BPF2500s 15T2 102

A8. 80% Confidence Interval for BPF2500s 15T6 103

v.

v"i
P (. ~ 4f* - ~ 9

LIST OF TABLES

Number Page

1. LPFI500 L9 and HPF3500 L9 Coefficients 39

Al. Random Number Transformation 89

CI. Filter Coefficients for LPF300 L9 111

C2. Filter Coefficients for LPF300 L15 112

C3. Filter Coefficients for LPF300 L31 113

C4. Filter Coefficients for LPF300 L63 114

C5. Filter Coefficients for LPF1500 L9 115

C6. Filter Coefficients for LPF1500 L31 116

C7. Filter Coefficients for LPFI500 L63 117

C8. Filter Coefficients for BPF2500s L9 118

C9. Filter Coefficients for BPF2500s L15 119

CIO. Filter Coefficients for BPF2500s L31 120
Cl1. Filter Coefficients for BPF2500s L63 121

C12. Filter Coefficients for BPF2500 L9 122

C13. Flter Coefficients for BPF2500 L15 123 .

C14. Filter Coefficients for BPF2500 L31 124

C15. Filter Coefficients for HPF2500 L51 125

C16. Filter Coefficients for HPF3500 L9 126

C17. Filter Coefficients for HPF3500 L15 127

C18. Filter Coefficients for HPF3500 L91 128

C19. Filter Coefficients for HPF3500 L63 129

,'- S

LIST OF SYMBOLS AND ABBREVIATIONS

Symbol Definition

a parameter to determine number of elements

trimmed off of a filter

a-TL a-trimmed linear

a-TM a-trimmed mean

W(x) continuous, odd, sign preserving function

time weighting coefficient in generalized orderstatistic filter model

bn rank weighting coefficient in generalized order
statistic filter

BPF band pass filter

FIR finite impulse response

g gain factor

GOSF generalized order statistic filter

h(n) filter impulse response

H transfer function

HPF high pass filter

I impulsive (Laplacian)

i(n) ideal signal

IIR infinite impulse response

L length of filter

L Laplacian

LPF low pass filter
MTL modified trimmed linear

MTM modified trimmed mean

:I

Symbol Definition

N length of filter; length of signal sequence

N normal (Gaussian)

NAE normalized average error

NMSE normalized mean square error

OSF order statistic filter

Pxx auto spectral density

cross power spectral density

T trimmed; number of elements trimmed

Tyx transfer function

x; x(n) input signal

y; y(n) output signal

z; z(n) output signal

i,

ix

I. INTRODUCTION/SCOPE OF THIS RESEARCH

With the increase in use of digital communications has come a

renewed interest in nonlinear filtering techniques. In some signal

processing applications the suppression of noise on a discrete-time

signal sequence can not be adequately accomplished using linear

filtering. In order to preserve sharp edges in a signal while still

smoothing noise and removing impulsive components requires some

type of nonlinear or adaptive filtering.

The most common nonlinear smoother to be investigated is the

median filter. In this filter the median is taken from a finite

length window of values surrounding the input value. This scheme

has been shown to preserve edges in signals with a minimum of

distortion and is resistant to outliers in the data. However, it often

does not provide adequate smoothing of noise that is not by nature

impulsive. Yet the desirable properties of median filtering make it
worth investigating. -

Several methods have been investigated to overcome the

limitations of median filters while retaining some of its

advantageous properties. These methods have sought to retain the

impulse rejection and edge preservation properties of the median

filter while improving the Gaussian noise suppression. Several of

the more prominent filters are discussed in Section II. This section

shows the progression of hybrid filter designs combining the

desirable properties of linear and nonlinear filters.

Yet this progression, while impressive and important, does not

NOMENCLATURE

Throughout the course of the simulation several different

methods were used to describe the various filters and filter

operations under consideration. First, median and mean refer to

the two filtering operations denoted by those words: median and

mean filters. However, the word median is also used in several

titles to denote transfer functions that were calculated using the

median method described in Appendix A. Transfer functions not

calculated using the median method were calculated by averaging.

The a-trimmed mean and a-trimmed linear filters are denoted

by either a-TM and a-TL or a-TM and a-TL. The size and

number of elements trimmed is also often specified in most titles.

An a-trimmed mean filter of length 9 with 4 elements trimmed is

specified by a-TM 9T4. Note that a-TM 9T0 is the same thing as

mean 9 or mean L9 and that a-TM 9T8 is the same thing as

median 9 or median L9.

The a-trimmed linear filters are specified in the same manner

with an additional designation to show which linear filter is being

used. The linear filter designation standing alone refers to the

untrimmed linear filter. For example, LPF1500 L31 refers to a low

pass filter of 31 elements with a cut off frequency of 1500Hz

(based on a 10kHz sampling rate). Equivalent designations for this

same filter are LPF. 15 L9 and LPFI500 9. The numbers following

the three letter filter designation-LPF, BPF, or HPF-indicate a

frequency associated with that filter. For the low pass and high

• 'N87 ~ ~163
Ile

.. 9

pass filters this number represents the frequency in the center of

the transition band, the cut off frequency. For the band pass filter

the number represents the frequency in the center of the pass

band. The frequency may be specified as a normalized frequency

from 0 to 0. 5 or as a frequency in Hertz based on a iOkHz

sampling rate. Designations for an a-trimmed linear filter look like

a-TL BPF2500 31T2. This designation is for a 31 element band pass

filter with a pass band centered at 2500Hz having 2 elements

a-trimmed.

There are some special one letter designations. BPF2500s is used

to identify the "kinny" BPF centered at 2500Hz with a sharper

roll off than BPF2500. The following one letter designations refer to

the filters opposite them:

X(tra low pass) LPF300

L (ow pass) LPF1500

B(and pass) BPF2500s

F(at band pass) BPF2500

H(igh pass) HPF3500.

These designations were used when a condensed notation was

necessary. They are often seen as F31T2 to designate a-TL

BPF2500 31T2.

xi

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to Professor

Ritcey for his assistance in making this thesis a reality. In

addition, special thanks to Mr. Dave Fray and Mr. Ed Gulbransen

without whom I would never have been able to tackle the

computer problems that constantly impeded my path to this goal.

Je4

6;

I..

R~ 1K* * - ' -

2

address a particularly important characteristic of linear filters:

frequency selectivity. There are many applications in which the

signal of interest is not obtained using a simple low pass filter-the

median filter being a low pass operation-but rather a filter

selecting some other frequency band. It is addressing these

applications-matched filter banks and IF and RF filters, for

example-to which this research effort is directed.

It is a relatively simple matter to design a linear filter to pass

a certain band of frequencies. However, if the environment

through which the signal is propagated happens to be impulsive

rather than Gaussian, say under the polar ice cap as an extreme

example, then a linear filter may not provide adequate smoothing

of the noise. In this case it would be desirable to have some of the

outlier resistance properties of the median filter in order to deal

with the impulsive noise.

Section III describes the generalized order statistic filter (GOSF)

model. An a-trimmed linear (or-TL) filter is defined using this

model which is an attempt to meet the goal of a frequency

selective filter having the outlier resistance properties of the

nonlinear median filter. In this section the a-TL filter model is

defined based on the logical progression of hybrid filters described in

Section II. Several important considerations of this design are also

discussed at the end of Section Il.

In Section IV some performance measures are defined with

which the a-TL filter will be evaluated. For this filter model the

performance measures of interest are, of course, outlier resistance

•"

3

and frequency selectivity. Special attention is given to how the

frequency performance of the nonlinear a-TL filter is assessed. A

brief discussion of some of the important simulation parameters is

also included.

The results of the simulation are presented in Section V.

Several effects of the trimming process on the linear filter

characteristics are discussed to provide insight into the filtering

mechanism. More importantly, several specific effects of filter

coefficient parameters on the performance of the a-TL filter are

discussed in detail. This discussion centers on how varying certain

filter design parameters such as the number of elements in the

filter and the steepness of the designed filter rolloff seem to affect

the performance of the a-trimmed filters in general.

The analysis of these effects is summarized in Section VI. The

overall performance of the a-TL filter is assessed and possible

avenues for improvement/future research on the trimmed linear

filter are discussed.

PLA MAMA AA-%A L

II. THE ORDER STATISTIC FILTER

A. THE L FILTER

Bovik, Huang, and Munson introduced a generalization of the

median filter which they called an order statistic filter (OSF). This

filter uses some linear combination of the ordered data in a

window around an input point to produce the output. With the

proper choice of coefficients one may create a running mean filter

(all the coefficients equal to 11N), a median filter, or something in

between. In addition, a minimum or maximum filter is also a

special case of the OSF. I Lee and Kassam noted that an OSF is the

same thing as an L filter since an L filter is, by definition, a

linear combination of order statistics. 2

Lee and Kassam went on to develop a simple representation of

the L filter called an a-trimmed mean (a-TM) filter. In this

representation the filter has a requirement that all the weights in

some central portion of the window be equal to a constant with

the rest of the weights taken to be zero. The number of samples

trimmed off each end of the window, T, is parameterized by a,

T = La(2N+I)J, where 0:5a50.5 and LxJ is the largest integer less

than or equal to X. This filter also has the two special cases of the

running mean filter, a=O, and the median filter, a=0.5. The

parameter a is chosen based on a priori knowledge of the noise

distribution or by an adaptive scheme. 3

'-,.

5

The output Yk for this filter is given by

2N+1-T

yk = Z x1(j)/[2(N-T)+I], (1)
J=T+1

where zk(j) is the jt order statistic of the window centered

around the kth element in the signal. Lee and Kassam observed

that the a-TM filter possesses a clear trade-off between the

advantages of a mean and a median filter. As a approaches 0 or

0.5 the characteristics of the filter approaches a mean or median
filter, respectively. 4

B. M FILTER

Lee and Kassarn also proposed an M filter with a more

favorable combination of the two individual filters' characteristics.

The output yk of an M filter is defined as the solution to the

equation

k+N

E (- Y,) =o, (2)
ik-N

where 6 is some odd, continuous, and sign-preserving function.

When U is the linear function U(x) = ax, for a-constant, the M

6

filter reduces to the running mean filter. On the other hand, the

M filter's characteristics approach those of the median filter as

O(x)-s;n (x) under certain conditions. 5 They also defined a

standard type M filter (STM filter) as a limiter type filter for

which

OW xI. :9p (3)

-g(p), x <p

and g(x) = ax as shown in Figure 1.

3(x) &

I|

-. P.

'z-z1 I x 'i

Figure 1: 0(x) for a STM filter 6

The STM filter was found to have very favorable

characteristics. Its window is somewhat data dependent so that it

tends to treat as outliers those values which are very large or

very small as compared to the median. This leads to the

interpretation of an STM as a data dependent type of L filter that

may have a nonsymmetric window. Lee and Kassam concluded

6

7

that an STM tended to act as a running mean filter when neither

edges nor impulsive noise were present and as a median filter over

areas with edges. It combined the advantages of the two types of

filters more favorably than an L filter. The major disadvantage of

the STM is that it is difficult to evaluate the output of the filter.

In their simulation, Lee and Kassam used the iterative Newton's

method. 7

Finally, Lee and Kassam noted that the main difference

between an a-TM filter and an STM filter was that the number of

samples trimmed from each end of the window of an STM was

data dependent and not necessarily symmetric. This was the
.1

reason STM filters could outperform the simple a-TM filter.

Applying this observation they came up with a modified trimmed

mean (MTM) filter which is simple to implement and, in many

cases, produces results at least as good as those obtained with an

STM filter. s

The MTM filter first determines the sample median mk inside

its window and then chooses an interval [Mk - q, mk + q] using

some preselected constant q. All data samples whose value lie

outside the range are discarded and the average of the remaining p..

values is taken as the output at sample k. This is a similar

operation to an a-TM filter only for the MTM filter the range

around the median is the determining factor in how many samples
are discarded instead of the constant number of discarded samples "I

determining the range of values to average in the a-TM filter. The

MTM filter also differs from the STM filter in that the MTM filter

8

may discard the values that lie outside the preselected range

whereas the STM filter only limits these values to the range itself.9

References

I Alan C. Bovik, Thomas S. H and David C. Munson,Jr.,
'A Generalization of Median Filtering Liear Combinations of
Order Statisticsp rpaA S I n

Si" r 'i , ~ff ASSP 0.V134. 0

2 Yang Hoon Lee and Saleem A. IKaSSam, 'Generalized Median
Filtering anid Related Nonlinear Filteri Techniques, * I

Trna Lee n W im ~g and Kassam, 674.ng Vl

Lee and Kassam, 674.

4 Lee and Kamsm, 675.

5 Lee and Kassam, 676.

16 Lee and Kassam, 677-.

7 Lee and Kassam, 6778.

SLee and Kassarn, 678.

Lee an Kassa, 678

W

Ill. THE GENERALIZED ORDER STATISTIC FILTER

A. DEFINITION

Seeing these developments and the improvements that they

allow makes one wonder at the possibilities of merging the

capabilities of linear and nonlinear filtering techniques. Using the

notation that has been discussed up to this point, we will look at

the possibilities of a filtering scheme proposed by Ritcey that may

be called a generalized order statistic filter (GOSF). The scheme

works like this: a signal is passed through a set of time weighting

coefficients designed for some particular frequency response. But

before the results are summed, the values are ordered and

trimmed according to some scheme. This is easier to visualize

graphically as shown in Figure 2.

data in xz I x)

sort]Uc,]U2

Figure 2: Generalized Order Statistic Filteryo) YQ)I

10

A notable feature of this system is that many other filters are

special cases of this generalized model. As with the L filter in

general and the (-TM filter specifically, the running mean and

median filters are easily and obviously attained by choosing the

proper coefficients for this model. In addition, one notes that the L

filter is also a subset of this general model if we choose all of the

an's to be unity. Finally, one can also obtain an MTM filter by

providing a mechanism to check the signal values as they come

out of the sorter and choose the bn coefficients based on the

median and a preselected range parameter.

The output zk is given by

2N+1-T

Zk : (1/g) bjyk(j) (4)

J"T+1

where ykj) ordered[yj] centered around Xk and

yj= ax; i 1, 2,... N (5)

a'.

and g is the gain factor to be discussed later. .-

-U
be.' .¢¢ _e2,e _ .: .¢2.. 2 : 2 - .-. 2 ... : . 2 2 ' -° .2 g' .' . g'.". . 2 ° 22 ° 2 : 2¢: : 2- 2" - -°-US...,?

11 .5

B. THE a-TRIMMED LINEAR FILTER

The a-trimmed linear (a-TL) filter is obtained from the "SS.
5,

generalized order statistic filter by using a set of linear filter

coefficients as the time weighting coefficients. The signal enters a

window and is weighted by the au's just as if it were going to be

linearly filtered. Only before the weighted values are summed to

produce the filter output as in a linear filter operation, they are

sorted and trimmed (the bn's being restricted to zero or one).

Thus we have a sort of trimmed 'linear" filter similar to the

a-trimmed mean filter. The main difference between the two

filters is that the a-TM filter has an's that are a constant equal to

I/(N-T) while the a-TL filter has a set of FIR coefficients for the
5.--

an's which are modified by a constant, the gain factor g.

C. GAIN

A serious consideration in this model is the gain of the system.

Without some modification, if a set of linear FIR filter coefficients

that sum to a particular value (say unity for a low pass filter)

are used and then some of the values are trimmed off, there
"'.

would be some gain in the system that may make it difficult to

see what is actually happening. To take into account the gain of

the system we look at what happens to a constant signal passing

through it. To overcome the attenuation the linear set of

coefficients are ordered and those coefficients that would not be

~"

12

trimmed by the filter are summed. As an example, suppose a

constant signal of unity was passed through a hypothetical seven

element LPF whose coefficients were as follows:
A

-1, 2, 4, 6, 4, 2,-1
ar's 16 16 16 16 16 16 16

-.

where -an =1.

Ordering these we would get -1, -1, 2, 2, 4, 4, and 6 sixteenths.

If, in our filtering scheme, we happened to trim off the largest

and smallest values and summed the result we would get 11/16 as

the filtered output of the constant unity input. Thus our gain

needs to be 16/11 which corresponds to summing the a's that are

not trimmed and dividing the filter output by this amount. The

gain factor is given by

T/2

g =7 an - (a(, + a(N+1.i)) (6)

where the a,,) = ordered(an] and T is the number of elements.

being ,%rimmed (always even). In general, however, a filter

IV. PERFORMANCE EVALUATION

A. PERFORMANCE MEASURES

In evaluating this proposed filtering scheme concentration will

be focused on two major filter characteristics. Our primary

interest will be trying to maintain the frequency selectivity of a

linear filter (i.e. being able to create a filter to pass a certain

frequency band) while adding in the inherently nonlinear

characteristic of outlier resistance. These two capabilities do not

exist simultaneously in any of the filters discussed previously. In

all of the filter models discussed up to this point the application

was assumed to be that of a low pass filter. What if the

application calls for a selection of some other frequency band as

the signal of interest? In this case a linear filter is needed, but we

already know that a linear filter is highly susceptible to the effects

of outliers on the input signal. Is there a filter design that will

allow a frequency selection of other than a low pass filter while

providing improved performance in the presence of impulsive noise?

We are going to evaluate the proposed a-trimmed linear filter in

regards to these two performance measures: outlier resistance and

frequency selectivity.

FREQUENCY SELECTIVITY

The evaluation of the frequency selectivity of a filter is going to

be based on how well the modified filter's frequency characteristics

match that of the unmodified linear filter. This criteria was chosen

15

because it is relatively simple to evaluate. It does not require any

modification of the filter coefficients. We can just compare how

well the frequency response of the modified filter compares to that

of the unmodified filter. This allows an evaluation of how the

ordering and trimming of the a-trimmed linear filter affects the

frequency characteristics of the original linear filter.

We could have chosen to set a particular frequency

characteristic as the desired response and, through some iterative

procedure, changed the coefficients of the filter adaptively to best

imitate this desired response. However, due to the nonlinear

characteristics of the a-TL filter this could prove difficult to do.

Therefore, this possibility was not explored. This could be an area

for further study.

In evaluating the frequency selectivity of the a-TL filter we $
will first compare visually the frequency response characteristics of

the a-TL filter to those of the original linear filter. This may allow

a quick insight into the actual physical process of the filter and

may suggest ways to improve filter performance. Second, we will

do an error analysis of the modified filter's frequency

characteristics compared to those of the original linear filter. This

will allow a quantitative evaluation of how much degradation in

frequency performance is introduced by the a-trimming process.

TRANSFER FUNCTIONS

A problem encountered here is how to measure the frequency ,o

characteristics of a particular a-TL filter. The frequency response

of an FIR filter is found simply by using an impulse as the input

16

to the filter and taking the DFT of the output. This is the transfer

function of the filter because the DFT of the input (an impulse) is

unity at all frequencies. However, we cannot find the transfer

function of the u-trimmed linear filter in the same manner

because it is designed to reject impulses in the input signal. By

using an impulse as the input into an a-TL filter, with even only

two elements trimmed off, the output of the filter is going to be

zero at all times.

To overcome this limitation in measuring the transfer function

of the nonlinear filter, white Gaussian noise was used as the input

to the filter. The transfer functions were then computed as

follows. An input x(n) of white Gaussian noise was filtered to get

the output y(n). The input and output sequences were both

Fourier transformed to get X(eJw) and Y(eJw), respectively. The

transfer function H(eJu) was given by

IH(eiw)I = IY(eJw)I / IX(eiw)I. (7)

This calculation gives the proper magnitude of the transfer function

which is more often calculated by

Tyx Pyx / Pxx (8)

where P., is the cross power spectral density of the output with

1r7

17

the input (Y(eJw)X*(eJ')) and P, is the auto power spectral

density of the input (= X(eJw)X*(e Jw)). This calculation preserves

the phase information of the transfer function as well. However,

we are only interested in the magnitude of the transfer function.

Experimentally it was found that by choosing a window

function for the input signal that minimized leakage, the transfer

function for the linear FIR filter calculated using white noise as the

input was equal to. the transfer function using an impulse to

within the resolution of the computer. That is to say the error

between the transfer functions calculated using the two different

inputs, if any, could easily be attributed to round off error within

the machine. The window function is discussed in more detail in

Appendix A.

OUTLIER RESISTANCE

As was noted previously, FIR filters inherently perform poorly

in the presence of impulsive noise on a signal. This is due to the

effect a large impulse has on a linear filter. Being summed in each

element as the entire window passes over it creates a bias in the

output signal in the direction of the impulse. We would like to

minimize the effect of an outlier by discarding it as in a median

type filter. If this were possible then the effect of an impulse on

the input signal would become very small. The only performance

sacrifice would be, in effect, a shortening of the filter length by

one element thus decreasing the Gaussian noise suppression

capability of the original linear filter. While this is a simplification

of the actual filtering process, it serves to illustrate the differences

L

.,.r"'ce

'I

18

in effect an impulse has on a linear filter versus a nonlinear filter.

We can evaluate a filters performance in rejecting outliers in

two ways. The simplest and most straightforward method is a

visual measure of comparing graphs of test signals to see which

filter produces the smoothest output with impulses present on the

input signal. While this method may seem imprecise it does allow

an immediate evaluation of a filter's performance upon a

particular input signal and a quick comparison of different filters'

performance. By comparing the input to the output at any given

instant it also gives an insight into the filter's physical process.

This gives an understanding of why a filter performs well in some

situations and poorly in others and may suggest ways to modify a

particular filter design to perform better in some respect.

The second method for evaluating performance would be to

compute the error between the filter output and the uncorrupted

input signal to try to numerically determine which filter best

smooths noise. This would allow a direct comparison of different

filters' performance on a particular set of input signals. With a

proper choice of test signals we should be able to derive some

insight into how well a particular filter design will perform under a

given set of input conditions. In order to find out what trade-offs

are being made we will evaluate the performance of several filter

designs on several different input signals under three test

conditions: I) the signal corrupted by Gaussian noise only; 2) the

signal corrupted by impulsive noise only; and 3) the signal

corrupted by both Gaussian and impulsive noise. This will allow us

WA

19

to see if, by adding a capability to deal with outliers on the input

signal, we are giving up too much Gaussian noise suppression.

B. SIMULATION APPROACH

There are several specific aspects of the simulation that are

worth mentioning. First, the equations for the calculation of the

transfer functions for the frequency selectivity tests, given in part

A of this section, do not allow the transfer functions to be

calculated deterministically. Since the inputs for these calculations

were Gaussian noise, and therefore random, the transfer functions

were found probabilistically. Five hundred trials of random noise

were generated to calculate each transfer function. Each of these

were sent through the filter separately, Fourier transformed

separately and then the output transform magnitude was divided

by the input transform magnitude to generate a single trial

transfer function and stored point by point. When the transfer

functions of all 500 trials had been calculated and stored, the

results for each point were then ordered from smallest to largest.

The median at each point was chosen to represent the transfer

function of the a-TL at that frequency.

The median was used instead of the mean in determining the

transfer function at each point for two reasons. First, the

histogram of values at each point usually was quite skewed. Most

of the values were lumped at a certain distance from zero (there

could be no negative values) with an exponential distribution fading

2Wl

away from the main lobe. Second, and more importantly, due to

the nonlinearity of the filtering there were individual values which

were hundreds of tunes larger than most of the others. These "

individual values could affect the output at a single point by as

much as 20 of the average value. For a complete discussion of

the transfer function histograms see Appendix A.

Second, in evaluating the outlier resistance performance of the

a-TL filter and comparing it to some of the other filters described

previously it was important to develop a set of test signals that

would allow observations on particular signal characteristics. This

was basically narrowed to a comparison of signals with only

smooth, "slow" variations-slow being relative to the frequency

band of the filter-to signals with sharp edges. A suitable set of

input signals was developed and included several signals of very

smooth slow variations, a sine wave or slow ramp, for example,

several signals of step functions and a couple of combination

s . The combination signals generally showed the most Il

interesting results and are used for most of the examples shown in

Chapter V.

Once this set was developed each signal was corrupted with

noise. To each signal was added 1) Gaussian white noise only; 2)

impulsive (Laplacian or double-exponential) white noise only; and

3) both Gaussian and impulsive additive noise. The purpose of these

three testing schemes was to try to show that the a-trimmed

mean and a-trimmed linear filters performed better than some of

the other models in impulsive noise. The comparisons would allow

-w . U - -°. %'J. . .
+' ,IJV'.qrS' J'. , ",r ,+ . : ' 5 ' 5 <+ + . 5 '. .". . ,+.+. Up." ' + +''"'.+'+ + "+" ' '+ ,'+"+'1 • • - i i l+is l - A''l+ "

%

" u" +" ' 1 . • I"% "". . *"'q ' ' '"l,

21

us to wee how much Gaussian noise suppressionl was being given up

for this outlier rejection.

V. RESULTS

A. FREQUENCY SELECTIVITY

As one would probably expect, the frequency characteristics of

the a-trimmed linear filter are similar to those of the

corresponding linear filter. However, as one might also expect,

the frequency performance is not as good. Naturally, trimming

elements off of a set of coefficients will produce some side effects, a

degradation of performance. This is especially pronounced in the

a-TL filter for a couple of reasons.

First, we have a randomness associated with the nonlinearity

of this particular trimming process. The element chosen to be

trimmed, and thus the effect a particular coefficient of the linear

filter has on the output at a given time, varies from point to

point depending on the input data surrounding the point. The

trimming takes on a data dependence. This inherent nonlinearity

of the filter introduces a randomness that can only be expected to

upset the balance of a set of linear coefficients.

Second, although the trimming is data dependent and therefore

somewhat random, in this filter it is the largest and smallest (or

rather the largest positive and largest negative) values that are

trimmed. In the absence of large outliers on the input signal, we

can expect that these values will correspond to some of the largest

(in absolute value) filter coefficients. This means that some of the

coefficients that would normally contribute the most to the output

• -"B

23

at a given point in the linear filter are the elements that are being

trimmed.

These two observations help us understand some of the process

that causes a degradation of performance. Experimentally,

however, several interesting and perhaps not so intuitive things

were discovered about what effects the a-trimming process has on

a set of linear filter coefficients and the effects of certain filter

coefficient parameters on the trimming process itself. Specifically

there were three notable items: 1) the effects of the filter's

length; 2) the effects of the designed linear filter's rolloff

characteristics; 3) the symmetry properties maintained through

the trimming; and 4) the DC gain problem the a-trimming process

introduces. Each of these topics will be discussed in some detail.

EFFECTS OF FILTER LENGTH

As we know from linear filter design class, the more elements

we have in a filter the better the frequency response we may

obtain. More elements in the filter mean we can design a better

attenuation in the stop band, a steeper rolloff in the transition

band, a flatter response in the pass band or more often some

combination of these design parameters. Thus, when we start

trimming away some of the coefficients of a filter we can only

expect that some or all of these basic parameters may suffer. In

addition, if the trimming is done in a random or nonlinear fashion

we can expect a certain amount of randomness or nonlinearity to

be introduced into these filter parameters as well.

During a normal filter design, one of the major trade-offs

24

encountered is the cost of increased complexity caused by a longer

filter with the desired stop band attenuation and transition band

rolloff. The importance of the flatness of the pass band and stop

band are normally accounted for by the choice of the filter

design-Butterworth, Chebyshev, Elliptical, etc. -and to a smaller

extent by the length of the filter. Usually the driving factor in a

filter design will be that the attenuation in the stop band meet

some minimum requirement. This is balanced against the cost

(complexity/length) of the filter.

An interesting effect occurs, however, when we start talking _

about an c-trimmed linear filter with a set of FIR coefficients. An

attenuation limit is reached quite rapidly even though the filter is

made longer! By comparing the graphs of BPF2500s for the lengths

of 31 and 63 elements, Figures 3 and 4, and the graphs of

HPF3500 for these same lengths, Figures 5 and 6, one can see that

the attenuation does not get any better for the longer filter. In

fact, if the graphs were superimposed it could be seen that the

responses are nearly identical. This is especially true for the T=2

graphs. The attenuation is the same for all frequencies with only

some minor discrepancies in the rolloff region. As T increases this

variation in the transition band increases somewhat. The rolloff is

slightly steeper for the longer filters as would be expected. In

addition, the first hump is slightly narrower, a little higher, and

rises more sharply for the longer filter. These facts all seem to be

in line with what we would expect for a larger linear filter.

Ie

,:e:

25

WM4B 31 RESP(NS

-25-

-igur 3 .IT P200 3 rnfe ucin

261

?DiJB 03 RESPIINSI

56 k

-20-

-3

FREG Cw/Z~i)

Figure 4 a-TL BPF2500s L63 Transfer Functions

or r M .6

27

MEDIA H 31 RESP(I.;

5-

T=4
LUl

20-

-25-

8.0008 0. M a.AE (.. -51 C. r. M 3. 3E CE. 3 . .43 1 E . 5E
FREG (W2PtJ

Figure 5 a-TL HPF3500 L31 Transfer Functions

28

MDI4J H 3 RESPN'-

5- U

"i " '" ,, ,,,,, ,,,,. T 4

18 Sir4

T=4

T-2-

-25-

-30-,
8. M a. E5E a. Jc E. 5 E. 1 .1 M .3 X E E. 33 E. .3 ,1 ,- E 3. HEt

FREQ (W/?Pi)

Figure 6 a-TL HPF3500 L63 Transfer Functions

'I

S.,

29

In order to complete the comparisons, note the maximum

attenuations for each of the filters. For the BPF the maximum

attenuation of the trimmed filters near 0 and .5 normalized

frequency is about -32 to -33dB. This is for both the 31 element

filter and the 63 element filter. Now compare this to the

attenuation obtained by the actual linear filters. Figure 7 shows

that the 31 element linear BPF has an attenuation of -47dB while

Figure 8 shows that the 63 element filter has an attenuation of

-84dB, an additional 37dB of attenuation! Yet the trimmed filters

have nearly identical attenuation. A similar case exists for the HPF

example. The linear filters of length 31 and 63 have stop band

attenuation figures of -56dB and -102dB, respectively. A difference

of 46dB1 Yet the maximum attenuation of either of thes filters

when trimmed is only about -28dB. This limiting effect was seen

in all of the examples in the simulation.

This effect is probably most closely related to one of the effects

discussed at the beginning of this section. In the a-trimming

process, the data elements that most often get trimmed are those .0

that are modified by the largest linear coefficients. These

coefficients are responsible for a large portion of the filter's overall

shape. When the length of the filter is increased, the additional

elements are typically very small and have a very fine effect.

They only become significant when combined with the larger

coefficients of the filter. Taking out the larger coefficients probably

nullifies most of the subtle effect the smaller coefficients have in

lowering the stop band.

"o'p
'I.-

30

20-

-21 .,.. .,

U -26 T

-.II -

8. 069 0. ISE 3. .E(E. .5a E. 233 3. 3. 3'EE H . 353 E. 43 3. 4EE 3. 3EE
FREQ (C'iAV)

Figure 7 a-.TL BPF2500s L31 Transfer Functions plus Ideal

Frequency Response

~

31

IWDIW B b3 RESPONS

-48e- Tb

-b-- T=4

V v IDEP i m

-12

-150 48 -

-. 1 060 C 05- E. M a. M E. 253 C. 3 I..(4, E. t5, E. 5D

FRE9 (w/'2Fi)

Figure 8 : a-TL BPF2500s L63 Transfer Functions plus Ideal

Frequency Response

32

EFFECTS OF DESIGNED ROLLOFF

If you were watching closely in the previous section you may

have noticed something strange that was not emphasized. In the

filter examples given the linear band pass filters had attenuations

of -47dB and -84dB for 31 and 63 elements, respectively. Likewise

the high pass filters had corresponding attenuations of -56dB and

-102dB in the stop band. Yet, when 2 elements were trimmed

from the BPF the attenuation only dropped to u-33dB, while the

same amount of trimming off the HPF caused the attenuation to

rise all the way to u-28dB. The BPF suffered less degradation than

the HPF! This seems counter-intuitive.

Taking a closer look by comparing the two 31 element filters

we see that the attenuation of the BPF dropped from -47dB to

roughly -33dB when two elements were trimmed. While the HPF,

whose better original attenuation of -56dB, rose to about -28dB

when the same trimming was done. Obviously there is some effect

other than filter length involved here.

It turns out that the answer is in the coefficients themselves,

or at least in their design. The main difference between the high

pass and the band pass filter of the previous section is the width of

the transition band. The BPF was designed with a steeper rolloff

than the HPF. It may seem improbable that this is indeed the

reason for the discrepancy in the stop band attenuation since the

filters pass different frequency bands, so the following example is

offered.

A second band pass filter was designed with the same, more

33 '

gentle rolloff as the HPF recently discussed. The frequency response

of the 31 element filter is shown in Figure 9. Note that the linear

filter has a -56dB attenuation in the stop band, the same as the

HPF of the previous section. In fact, in other filter designs it did

not matter to where the actual pass band was moved, if the S

roloff was kept at a width of 0. 1 (normalized frequency) and the

pass band was kept reasonably wide, then the attenuation in the

stop band was very nearly -56dB for all examples. Now note in

Figure 10 that the attenuation in the stop band does not go below

about -22dB when 2 elements are trimmed. Yet this filter passes

nearly the same frequency band as the previously discussed BPF

whose attenuation went from -47dB to -33dB when 2 elements

were trimmed.

It appears then that the coefficients for an FIR linear filter are

more resistant to a-trimming when the filter is designed with a

steeper rolloff, or at least the effect of a-trimming is dependent on

the characteristics of the coefficients in some way. Somehow in

these two examples the coefficients of the filter with the steep

rolloff were more resistant to u-trimming than the other two

shallower filters. (We can say this for u-trimming in general

because, although it is hard to determine what is a good measure

of the attenuation in the stop band for trimming greater than two

elements, it is visually obvious that the attenuation for T=4 and .
T=6 was better for the steep rolloff BPF than for either of the

other two filters to which it was compared.) .

However, the previous two examples both used the same

-.-,

34

tIEDIA'j FB 31 RESPON,.

28-

-2 8. IDE L(i '

Iz rI...T.

I . S .. '

I

- 'e , 'jI I U g ...
_. i;,. Ij. i !i S.

-iosi I I '

U. 688e C. 850 C. 100 ,. 15(, 2CC C. 2S C.. , . ' C .$,CC C. $3 .5 . ,

FREQ (W/2,i) 2%

Figure 9 • -1L BPF2500 L31 Transfer Functions plus Ideal

F e e,

.5

.5-

35

IEDIOW FB 31 RESPc,'J

-28

-25,

8. 8SC S. 85a C. IN I. 15(3. 2C 1. 25-3 E. 13 .- r.(.. 4((C. 5 E. E.

FREP (wav'Pi)

lb

Figure 10 a-TL BPF2500 L31 Transfer Functions

36

example of a steep rolloff filter for comparison. It could be just a

fluke of the particular coefficients of that filter that the

c-trimming happened to have less of an effect on it. So another

steep roiloff filter was designed.

This time it was a LPF having a rolloff similar to the steep

BPF, but a much narrower pass band. In this case the rolloff was

0.04 normalized frequency with a pass band of a mere 0.01. The

designed attenuation in the stop band was -28dB for the 31

element filter and -52dB for the 63 element filter. The results for

this filter were even better than for the steep BPF as can be seen

in Figures 11 and 12. The deviation for the 31 element filter is

only 1 or 2dB for each successive pair of elements trimmed and

the deviation for the 63 element filter reaches the same levels only

taking a part of the stop band to reach that point.

SYMMETRY PROPERTIES

A somewhat unexpected property of the a-trimming process

was the high degree of symmetry it maintained. This symmetry

came in two important forms. First, the graphs of each of the

band pass filters in the previous section showed that the transfer

functions maintained the original band pass filter's symmetry

about the pass band. The attenuation was symmetric in each of

the two stop bands.

This situation was not necessarily expected. It's existence shows

that the c-trimming process does not have any frequency

selectivity. The trimming in the a-TL filter does not modify the

set of linear filter coefficients as does the a-trimmed mean filter.

37

IPI

-18-

-30- iTb

1* i V

-7-T

0. DO .6 . .1331If-. E 53C I f

FREt CWZ.i

Figure 11 a.-TL LPF300 L31 Transfer Functions plus Ideal

Frequency Response

6

38

MEDIA~ xL bl. RESPQI...'

33 tDEPL(LM

-46-
...

It

FREP (w/Zpi)

Figure 12 ac-TL LPF300 L63 Transfer Functions plus Ideal

Frequency Response

39

The a-TM filter's coefficients are modified depending on how many

elements are trimmed from the filter. No such modification occurs

in the a-TL filter. Thus, it could easily be expected that

a-trimming a linear filter may affect its frequency properties. The

simulation shows that this is not the case, however.

Second, the other important symmetry property maintained

was one dealing with similar filters. The LPF and HPF transfer

functions shown in Figures 13 and 14, respectively, show how the

u-trimming process maintains symmetry across the frequency

spectrum. As one can see in Table 1, the coefficients of each of

the filters have the same magnitudes. They only differ in sign.

One might expect that the the filters would be trimmed

differently, since the largest positive and negative elements are

trimmed in the u-trimming process, causing different transfer

functions.

Table 1: LPF1500 L9 and HPFt500 L9 Coefficients

-0.04739 = h(1) = h(9) = -0.04739
0.05110 = h(2) = h(8) = -0.05110
0.15307 = h(3) = h(7) = 0.15307
0.25926 = h(4) = h(6) = -0.25926
0.30437 = h(5) = 0.30437

The explanation for this symmetry seems fairly

straightforward. The noise used to calculate the transfer functions

404

40.

-28 ID-P ti mQA

-38--

-ii

0. 89C. 3 1. 331 LE .1 E .25 E . I zr 4(. 45IEE-1v

FR .O '*wI'.

Fiur 13aT P10S1 rnfrFntospu da

Frequncy Rspons

*I I

1~ Ilie

41

WI N 15 RESPLiS

-to-

-T24

-T=2

FREE CW/7Zpi)

Figure 14 cx-TL HPF3500 L15 Transfer Functions plus Ideal

Frequency Response

42

is zero mean and Gaussian and is, therefore, equally likely to be

negative as positive. Thus, on the average, the effects of a

difference in signs of the coefficients will not be a factor in the

long run and only be a factor in determining the frequencies

passed in any given interval, high frequencies or low frequencies

depending on the filter. An interesting test would be to give the

noise a dc bias so that every data point was the same sign. The

trimming symmetry that these two filters exhibit may suffer

under these input conditions.

FILTER GAIN

A troubling problem with the a-TL filter is the uncontrolled

gain of the system. The gain calculation outlined in Section 11 does

a good job of estimating the gain of an a-TL filter only if the

linear filter is a low pass filter. Experimentally, the gain factor

correction was very good for the LPF case. However, it was totally

unpredictable for any filter not passing dc. This gain problem

showed up in the transfer functions as a spike at 0 Hz. (This spike

was not evident when the median was used to select the transfer

function, only the mean. The distribution of values at the dc point

has a much larger deviation than at any other frequency for all of

the filters in the simulation. See Appendix A for more details.)

Interestingly enough, though, an unsuspected consistency was

found while attempting to calculate the error to evaluate the No

performance of an a-trimmed BPF in rejecting outliers. It was

necessary too correct the gain problem in order to calculate the

43

MSE between an ideal signal and the noise corrupted signal filtered

by the a-TL filter. So the output was modified by a minimum

MSE calculation. This minimization led to the calculation of the

required normalization factor. Surprisingly, the normalization

factor (same as the gain factor g) for a given a-TL filter remained

fairly constant regardless of the noise on the input signal. The

normalization factors for two of the band pass filters are given in

Figures 15 and 16. The values in these figures were obtained by

filtering the ideal signal-a sinusoid in the pass band of the

filter-with the a-TL BPF and then calculating the required

normalization factor to minimize the MSE between the filter output

and ideal input. 1
.

The normalization factors calculated when there was noise on

the input signals were consistently smaller than the values in the

Gain Factor for BPF2500s

1.0,
0.9

0.6

g 0.5 OPF2500L9

0.4 41- BI 500 L IS
0.3 4i- OPF2O0 L31
0.2
0.1

0.0
0 2 4 6 8

Number Trimmed

Figure 15 Gain Factor for a-TL BPF2500s

p.'-

1' * w* mv v |-,~~ r|r~ | .q ~' .- %*~.g~*

44

Gain Factor for BPF2500

I.0

0.9

0.- Gain Fodor for
0.7 2500

0oz N SPF2SOL9
0. * P2o00L15
0.3 41- PF2500 L31
0.2
0.1
0.0

0 2 4 6 a
Number Trimmed

Figure 16 : Gain Factor for a-TL BPF2500

figures, but right in the same neighborhood. This would be

expected since the noise on the signal would almost certainly add

slightly to the M between the ideal and the corrupted signal.

OVERALL FREQUENCY PERFORMANCE

One d the items that has not been stressed very much is the

actual measurement of the frequency performance in the stop

band of the a-TL filters. Where a reference has been made to a

value for attenuation in the stop band of an a-TL filter, the

measurement was made at the edge of the filter response where

the attenuaton had reached its best point. An important

measurement, though, is how good the attenuation is at the first

sWeiobe. For the original set of linear FIR filters these two

measurements were the same since the attenuation was uniform

45

across the stop band.

This is far from the case when measuring the attenuation in

the first sidelobe of an a-TL filter. As can be seen in Figure 17

this performance measure leads to some very poor results.

BPF2500s I st Sidelobe

0

2 -10
0-0

g -30 Sdmb

SL31

M -6 "6L63

a -70

g
-90

0 2 4 6
Number Trimmed

Figure 17 First Sidelobe Level of BPF2500s

This figure shows that the most serious loss of attenuation

occurs for the first two elements trimmed. After that the loss

appears to be fairly linear and not nearly so severe. The first

sidelobe is most affected in the long filter lengths. Since the

sidelobes become more numerous and skinnier, the loss of

attenuation shows up more clearly for the very narrow first

sidelobes of the long filters.

46

This makes it difficult to say exactly how bad the degradation

of frequency performance is for the a-TL filter. The attenuation is

much better than the level at this first sidelobe for the majority

of the stop band. Yet a significant amount of energy is passed

through the filter in this first sidelobe that would be attenuated in

the corresponding linear filter. About all that can be said for sure

is that the frequency response of the linear filter suffers quite a

bit when the filter is a-trimmed. The longer the linear filter and

better the stop band attenuation, the more a-trimming degrades

the performance.

B. OUTLIER RESISTANCE

The property of outlier resistance was one of the major design

considerations in all of the filter designs discussed in Section II. One

would therefore expect, for the low pass filter case embodied in all

of those designs, that adequate noise smoothing with impulse

rejection has been achieved with some degree of success. It seems

unlikely that a new filter design which has outlier resistance as

only half of the major filter objectives-the a-TL filter-would be

able to compete with any of the previously mentioned filters. On

the other hand, there is nothing to compare a band pass or high

pass a-TL filter to except the corresponding linear filter. In this

case one would hope that the a-TL filter could outperform the

linear filter in rejecting impulses.

f.Co

47

VISUAL EVALUATION

In visually inspecting the performance of the a-TL filter,

however, it is not practical to look at a high pass or even band

pas signal. No meaningful information is readily derived from

trying to do so. In order to determine the effectiveness of the a-TL

filter in rejecting impulses by a visual inspection it is necessary to

limit the investigation to the LPF case. This approach also allows a

comparison of the a-TL filter to several of the other filter designs

discussed in Section I1. Specifically, a comparison of the low pass

a-TL filter will be made to the a-TM filter (and the mean and

median filters, noting that these are special cases of the a-TM

filter having 0 and N-1 elements trimmed, respectively).

The input signal that best showed the filters' performance was

a signal similar to the one used by Lee and Kassam in one of their

papers on order statistic filters.' The signal has several edges and

several monotone regions. The signal is shown in Figure 18, before

and after it is corrupted by white Gaussian noise, a2 = 0.2. Figure

19 shows the same signal corrupted by white Laplacian noise,

02 = 0.5. This signal is known as signal I (SIGI) and the two

corrupted signals are known as SlGIG (Gaussian) and SI61

(impulsive). A third version of this signal, SIGIlG, is SIII plus

white Gaussian noise, a2 = 0. 1, and is shown in Figure 20.

The filters used in the simulation for the visual evaluation were

LPF300 L9 and LPF1500 L9. The 9 element filters were chosen

because they were short compared to the features of the signal.

The LPF300 signal is particularly interesting because it was

-V - - - --. - ---

48

SIGi+GAUSSIfrN NOI L

0'

0-

c d

o t oo

'- if 1. 0 , ,, - ,,
CE' I"'" 'L DEOIL

-4+N[O .--? 2)

*

'.'

IIIII Iv ' I I' I' 'I V I v I I v III' *Ir' v-ri t rlx vl I I 'i rrT r-, t1-

0 10 20 30 40 50 1')() 70 H'O 90 100
SAlMPLE IT'NIl'lll-)

Fig'ure 18 :9G6 - signal 1 + noise -N(0,0.2)

I

49

SIG1+IMPULSE NOISE

0

0g-

CD

o

* 16

I tio 444 I

44E: CD 1DEA

,- 'I 4* , * -p'

4. S ', ,' I

II t
tI at

I /OE L

CD

ro

- o 1 11T1 +T1O 5Tf Tr r v r rrrrr I

0 10 20 30 40 50 GiO 70 00 90 100
SAMPLE (TIME)

Figure 19 : SIG11 - signal 1 + noise -L(0,0.5)
"4'ZlI

50

SIG1+GAUSS+IMPULSE

0

S j II

II * |

,10-
0 "I'

0~ It $toI

(.-J * +N,'o+L.
I I

-4 to II

0'

I " ' ' II I r -r T I v I T I I-rT'r ' II I v ' l

0 10 20 30 40 50 60 70 830 90 100

SAMPLE (T I[ME)
Figure 20 : sieilG - sI + noise -N(0,O. 1)r

C.D' I I1

: " .' d 'I~,% ,, •', , ' 'r. ' ' '', '., ' .-'.. :' -'',': , ''-, ".- " .'', -, , ;.'i.X''- °'1,,--, -I'-' "

51

designed to have a transfer function very similar to that of a

mean filter, having a similar pass band width and rolloff.

The results of SIGIG being filtered by a mean and median filter

of length 9 and a-TM 9T6 are shown in Figures 21, 22 and 23,

respectively. As expected, the a-TM is a very good compromise

between the noise smoothing of the mean filter and the edge

preservation of the median filter. Figure 24 shows that the LPF300

L9 filter, even though it has a similar transfer function to the

mean filter, does not do as good a job smoothing the Gaussian

noise, but still introduces the same smearing of edges. This is due

to the nearly constant coefficients of the filter. However, if the

LPF300 L9 filter is a-trimmed 6 elements, the results are very

comparable to the a-TM filter of the same length and trimming.

The a-TL filter fails to smooth the noise as well near the end of

the sinusoidal section, but matches the flat pulse much better as

shown in Figure 25. The LPFI500 L9 filter lets through too much

of the noise, even when a-trimmed 6 elements as shown in

Figures 26 and 27, respectively.

Of a more primary interest is how these filters perform in the

presence of impulsive noise. The mean, a-TM and median filters

perform as expected in Figures 28, 29 and 30, respectively. The

important spots to watch in all of these figures are the doublet

type impulses in the first flat region, the single and double width

impulses at the top of the sinusoid, the pair of opposite pulses in

the middle of the sinusoid region, the doublet type impulses at the

falling edge of the step and the string of five impulses on the final

52

SIGG - MEAN 9

0

0-

I .

.. C

E-
CD I.[DEAL

~c'JMEAN- 9-

C

'' '''' 'I ' , j- -r-r 'I-I I j T ~ -rT r- T- I 1 T

0 10 20 30 40 50 h() 70 UO 90 100
SAMPLE (TI Me

Figure 21 : SIGiG Filtered by Mean 9

SIGIG - MEDIAN 9

0.

0

0
J

[r)IDEAL

C]

0-
- MEOIF-N

E I
r

' ' ' I '
I I I I I -r-TT I - ' I ' ' ' ' I

0 10 20S PL30 40 50 T O I E(70 80 90 100F SAMEDI
AIME

Fiue20l1 ilee yMda

54

S IG IG -ATMN 9T6

C

0

0

kN.

SIG1 - t M '

a- CDIDE9

- T I MF

Fie 23 DEALz:: ,.,;ATM 976i

0 10 20 30 4U 51)] K); 70 t)(90 100
SAMPL.E (1' 1ML)

Figure 23 : SIGiG Filtered by u-TM 9T6

'55

SIGIG - LPF'300 9

C

0-

0

a° a .El(.L.J C)a a

I *

SAMLE (TIME

CiD
ME IEDEAL _

-LPF300)

0

1 r T1p ll1 1 11 1 1 11 rrr rrT -rr vrrT-, I
0 10 20 30 40 50 60 70 80 90 100

SAMPLE (TIME)

Figure 24 :SIGIG Filtered by LPF300 L9

56

SIGIG - LPF300 9T6

0

m C

F 40 9'p IO

-4
,C-'.'

L.- , E --

CDo

C --- F-ILT-ERED
CD

II

0

I '' I' '' ' JrT-r-r"I -fTr- 1' 1 1 1 1 1 1 r-r' r r 1 1 I" -r ' r-r-r--r-r

0 10 20 30 40 JIJ W 70 HO) 90 100

5A MPL.I (I' TI ML)

Figure 25 SIGIG Filtered by a-TL LPF300 9T6

%.'

*IS

57

S IG I G - LPI'I%O()O 9

(C)

4-

I

CD

0 O2 30 405 0 7 09 0

CD
McmO IULHLL

0 10 20 30 40 50 60 70 60 90 100
SAMPLE T[ME)

Figure 26 SIMI Filtered by LPVISO0 L9

• 4 '

58 h

SIGIG -LPI-'500 9T6

C

C0
CD__ I 4H

FI LaRC

SIPL (T I A.

Fiur 27 : *-I Fitee bya LLF50 T

59

SIGI - MEAN 9

C

0
,D

0

M C

• o - I S

' 'D -

MEAN 9

0 10 20. 30 10 50 60 70 80 90 100

SAMPLE (TIME)

Figure 28 : SIG11 Filtered by Mean 9

60

SIG[-I ATM 9T6

0C

C

(N

I-" " ':5.

C._9 o DEAL
*

9 T-9T

,- '

1111' 11 I 1 v ' I ' ' ' I ' rrr- rt I 1 1 tr, -r-T I I I -TT -r I !,]
0 10 20 3".0 40 50L i')o 70 till 90 1O00,

-, "-

SAMPL.E M-_)Fiur 2 :SIIIFiteedbya- TMT

61

SIGII - MEDA[N 9

w C)
CD
-

° !

CE I EA

IE I AN.

IDEAL

6

ow.

ST

0 10 20 30 40)o GO 70 Hol 90 100

SAMPLE (TI Ml)
z. 3,-' IFle'

I . .. " '"" "

.

-- .

'S'.

0 1020 3 40 [I 0 70 t(}90 l0 "

5£MPL ('l'1Mt".

62

ramp. Note in each of the three preceding figures, the filters dealt

with all of the impulses fairly well except the impulses at the top

of the sinusoid and thas on the final ramp.

Amazingly, the LPF00 L9 filter takes care of the effects of all

of the impulses quite well as shown iW Figure 31. However, this

filter still lets through too much small level noise and introduces

quite a bit of distortion to the signal. It can be seen in Figure 32

that when this filter is a-trimmed 6 dements the distortion and

low level noise are taken care of, but the pair of impulses on the

sinusoid have quite an effect. The real power of a-trimmi is
4*

seen on the LPFI500 L9. in Figures 33 and 34 one can see

that this linear filter still passes too much high frequency nois,"

but the distortion is smaller than that of LPF300 due to the larger
pan andbein beter bleto follow the edges in the signal.- Also,

trimming sax elmunts has some degree of success against the

outliers. In fact, this is the only filter that can be said to have

taken out the majority of the effect of the pair of impulses on the

top ofte sinusoid. *.

Although these graphs give a feeling of what can be expected

from an a-TL filter compared to one of the more traditional

filters, it is still difficult to see what is actually happening in the

a-TL filter. One example that delivered some really tangible visual

results is shown in Figure 35. In this graph the input signal is

SIGIIG. The two different outputs plotted here are those for a

median filter of length 9 and LPF300 L9 a-trimmed eight

elements, in effect an a-TL median filter At first one may think

..--%.# - ,,4 4 , - , 4* %' ., /V, %4,; , . / %. 44%, "**,*' . 4". 4 . d :""' ".'- * -* *" ",. "

63

SIG I - LPl7.U() 9

0

LP30

0
I ... "

0 102 0 05 6 0809 0

SA PL (I MEg),

Fgr 31 S1

z - , ,

SAMLE ,,-ML

Figure 31 SIGhl Fltered by LPF300 L9

I,

* q * _-

64

SIGII LPF300 9T6

0.

C)0-

C-9

.... V..)

SIDEAL
.._-- - . .- ---R ---

D

a *

I

C)

1 , lf r -r I I -I I I E

0 10 20 30 40 50 60 70 80 90 100

SAMPLE (TIME)]

Figlure 32 S IG11 Filtered by a-TL LPF300 9T6

FILTERE
0#
*

0e

• .S

65

51G1 - LPF1500 9CDt
* 4-

iq-4u

CD

0

G::~ o DEAL
- d LPF 1500

S

0

I 1. F1 I I fi l i 1 1 ' •I " ' r F l, f r I 11 IrT' '1'l-r , , , i , , , ,

0 10 20 30PES 40 50 O[, [lIt"70 00 90 100

Figure 33 : $I11 Filtered by LPF1500 L9

I'I

S a I
I *1~* -

66

SiG1 - LPFI500 9T6

0

0-wCD

(..9 IDEAL
~FILTERED

C)

0

I

I ' '' ' I' ' '' I '' ' I i r - 1" ,'T T I I r---Tr I r r r - I ' ' '" '

0 10 20 30 "40 SO 60, 70 00l 90 1O00
5F'MPLL (T NI.:)

Figlure 34 'SIG1I Filtered by a-TL LPF1500 9T6i

a, a.. >.,, -. ,, . :,. :-.::-..> > ... :-o.,,,,.--.o,,':

67

SIG1IG MED9 VS ATLOT

0

0

C-

C)~J

LLLPF3C0

0) 102L0P0F3~I7 ~Q9 00

SAMPLE (T IME)

Figure 35 Results of SIGlIG Filtered by Median 9 and a-71.'5

LPF300 9T8

68 A

that these two filters should produce the same output since they

are both nine element filters with eight elements trimmed.

However, one must remember that the a-TL filter weights the

input by the set of linear coefficients before the values are ordered

and trimmed. So even though an element in the input window of

an a-TL filter is the largest it is not necessarily going to be

trimmed. It is only trimmed if its value times its weighting

coefficient are large enough to. force it to the ends of the window

after sorting. As can be seen in the figure, the two graphs give Ole

the same outputs in some areas and are significantly different in

others. The most notable feature is that the two filters produce

nearly identical outputs in all areas of the graph where the signal

is changin most rapidly: near each of the edges and along the

center of the snusoid. The areas where the outputs deviate the

most are, in general, the flattest parts of the signal.

This suggests that something could possibly be done to improve

the performance of the a-TL filter or at least suggests what the

real differences are between the a-TL and a-TM filters. The reason

for the poor performance in the flat areas of the signal is most

likely due to the fact that the linear filter in this case has a finite

band pass. We know that the mean filter is optimum in smoothing

Gaussan noise, but the linear LPF must pass a certain band of

frequencies. Note that the oscillations in these flat areas are not

nearly so great as they were in the original signal. The high

frequency noise has been filtered out, but some low frequency

noise remains. The steep areas of the plot are changing fast enough

%I.

69

that they are at the edge of the filter band, at least, thus the

a-TL filter can do a good job of smoothing noise that has any

higher frequency components in these relatively steep areas.

NMSE COMPARISON

A more effective or at least a more informative method of

evaluating the performance of the a-TL filter in resisting outliers is

with an error analysis between the filtered output signals and the

original 'ideal* signals. This discussion will concentrate on three
.

different ideal signals each corrupted by either Gaussan nose,

Laplacian (impulsive) niows, or an additive combination o(both

types of noise. The first signal is a low frequency signal with edges

in it. It is the sina described above as SIGI Following the same

notation, a second signal, SlG2, is a smusmial signal with a

frequency in the center of the pm band for two different band

pass signals. SIG3 is a similar signal with a frequency that will

place it in the pass band of both o the LP filten pviouy

discussed. These three signals will allow mveral different

comparisons and evaluations. Signals I and 3 will allow different

filters to be compared in their performance with respect to signals

that have edges versus slowly varying signals Thes two signals

also give two examples for comparing the a-TL filter to the a-TM

filter. Finally, signals 2 and 3 will show the relationship between

the low pass and band pass cases of the a-TL filter

For every case tested two errors were measured normalized

mean square error (NMSE) and normalized average error (NAE)

These errors were calculated in the following manner

70

=NS (I/N) jy. (n)j - 0i(n)i]2, n =1,2,... N (9)

E, i(n)p

where y(n) is the filter output and i (n) is the ideal signal and

NAE = (1/N) 1 jy(n) - i(n)l, n = 1.2,...,N. (10)

-iiCn)l

Experbimetally, as evidenced by Figures 36 and 37, NAE

tfewed the same pattern as NMSE almost without exception. For

thsi reason NMSE will be the only error discussed since it is the

more common measure of error.

As evidenced by these two graphs, the a-TM filter performs

better and better against Gaussian noise on a signal with edges in

it w the number of elements trimmed is increased. This is largely

due to the reduction of distortion on the edges by the reduced

number of elements in the averaging. This effect is so acute that

th nm filter has the minimum NMSE for each filter length.

Thinclusion is backed up by looking at the NMSE plot of this

maw I of filters when the input was the smooth signal 3

cmW-ad by Gauman noise as shown in Figure 58.

Nw m ths praph that the vertical axis is only a small portion

Sthat ao the prevv'u one. Note also that trimming has no

av =,tayna effect In fact, the error between filter output and

.5 . * jj *

71

alpha-TM on Signal 1Ig-
NAE-O0.416

0.40 _________

0.35 1 -MM - 0.416

N 0.30 7M

A . 9 M

0 2 4 6 S 10
Nmober Trimmed

Figure 36 : SIGIG Filtered by a-TM - NAE

alpha-TM on Signal I g -
NMSE - 0.211I

0.25

0.20 Isg- *a-0211

M 0.15
19 MW

S IL WISE

0E0 41 L13 NMSE

L 15 MRS

0 2 4 6 a 10
Number Trimmed

Figure 37 : SIMI Filtered by a-TM - NMSE

.1% Mo.

72

the ida signal actually increases somewhat due to the decreased

number ot elements used to smooth the noise and the inferior

ability of the median filter to smooth Gaussian noise.

alpha-TM on Signal 3g -
NMSE - 0.375

udO@-ThmnS*p

N 7 WIBK
L9 WO

S OO i t I11NM
0.0E L13INM

! L15 INMB
0.05

0 2 4 6
Nume Trimmed

Figure 38 : SIG3G Filtered by a-TM - NMSE

The questions to ask now are 1) can the a-TL filters perform

as well in smoothing Gaussian noise as the a-TM; and 2) how do

the two compare in the impulsive noise case? Figures 39 and 40

show some interesting results. In the case of SIGIG the LPF300

a-TL filters (hollow point markers) perform like the a-TM filters

shown in Figures 36 and 37. The distortion introduced by the

linear filters by themselves is gradually reduced by more and more

trimming. Whereas the LPF1500 filters (solid point markers) are

able to follow the edges of the signal I fairly well initially due to

73

alpha-TI on Signal Ig -

ItISE -0.21 1

020 alpa-TI. on Signal 1g
N -WISE -0211

M 0.15 LPF.03 19 WISE

S 0.1 W1 F. 15 L9NMSE

E 4' IPF.03u wL1NSE
0.05~* .4'PF.15 115 WISE

0 2 4 6
Number Trimmed

Figure 39 :SIGIG Filtered by a-TL -NMSE

alpha-TI on Signal 3g -
NMSE -0.375

025 alph-TL on Signal 39
-NISE - 0375

N o* 1PF.03 19 WISE
M 0.15 41-LPF.1ISL9 NMSE

S 43' LPIF.03 1 15 WISE
E 0.0 -&LPF.15 115 NM

0.01- LPF.03 131 WISE

o 2 4 6
Number Trimmed

Figure 40 SIG3G Filtered by cz-TL - NMSE

74

the larger pass band, but trimming causes a degradation in noise

smoothing ability and thus an increase in the NMSE. For the

smooth SIG3G the results are turned in favor of the LPF300 filters'

ability to block out more noise than the wider pass band of the

LPF1500 filters. Indeed, the LPF300 filters perform nearly as well

as the a-TM filters. It is interesting to note the unexpected

decrease in error for a-TL LPF300 L9 in going from T=2 to T=4

and to a lesser extent the same thing happening to LPF300 L15 in

Figure 40. Perhaps some sort of resonance is touched in the filter

to cause this.

The a-TM filter and the a-TL filter perform nearly in the same

manner in the presence of impulsive noise on signal 1 as in the.4

presence of Gaussian noise. This is most likely due to the number

of edges in signal 1. The filters that can best deal with the edges

have the lowest NMSE values. The same characteristics which

allow these filters to handle the edges in the signal are also the

same characteristics that help the filters deal with outliers. An

interesting point to note here is that LPF300 filters have the

desired performance benefits derived from trimming elements off of

the filter (NMSE goes down as T goes up), while the LPFI.500

filters have a better initial starting point in both the impulsive and

Gaussian noise cases. It would be interesting to design a filter with

the steep rolloff of LPF300 having the pass band of LPFI500 to see

if a better performing a-TL filter could be obtained.

The results for the performance of all of the filters on signal 3

in the presence of impulsive noise are somewhat surprising. The

6

75

itd NME between 31631 and the ideal signal before filtering is

0.504, while for S1G3G the NMSE was only 0.375. Yet, nearly all

of the filters more effectively suppressed the impulsive noise than

the Gaussian noise as can be seen when Figures 41 and 42 are

compared to the figures previously shown for SIG G. Note the

different scales on the vertical axes. Notice also in this case that,

in the presence of impulsive noise, trimming only has a beneficial

effect for filters of short lengh and that the median is not the

best filter to use on this smooth signal.

The error calculations for all of the filters were predictable for

the case of the two signals corrupted by Gaussian and impulsive

noise at the same time. Superposition of performance in the two

cas seemed to hold very well.

alpha-TM on SIgnal 31 -
N1SE -0.504

o~~oe,+ - M on..' mS* 31

-NISE -0.504
N -. L7 iSE
M *i

0o.o4 4W. L9 WSES , "l" L I I S

0.03 " 13 NIISE
, L15 wnI

0.021 -- --

0 2 4 6 8
Number Trimmed

Figure 41 : SIG31 Filtered by a-TM - NMSE

76

alpha-TI on Sgnsl 31 -
NMSE - 0.504 '"

0.16 - dpbs-TL a 1*d31
-WI.. O~ m

o.1 -N 0.141,/ •0.4

M 0.12 LMF.03 L9 NMk

E0.06

0.00 LP. 15L31 Ml
0 2 4

Numb Trimmwr e

Fiare 42 : SIG3I Filtered by a-TL - NMSE

The really interesting example in these error calculations is the

cae of signal 2 and the band pas filters. As was pointed out

earlier, the ideal signal is just a sinusoid whose frequency lies in

the pas band of the two band pass filters discussed in part A. As

one can se in Figure 43 the linear filter performs an adequate job

of smoothing Gaussian noise. Trimming elements off of either filter

does not have a very big or very consistent effect. In general,

a-trimming tends to help the shorter filters and harm the longer

ones. This is probably due to the trimming introducing more
em

distortion in the longer filters since the signal changes are short

compared to the lengths of the longer filters.

However, when the signal is corrupted with impulsive noise,

a-trimming can have a great effect as evidenced in Figure 44. For

em

77

alpha-TI on Signul 2 g -

NMSE - 0.467

- upw-TL anSipd2

N o~o 9g- NMSE -O.457

M OfPF 25 L9 NMSE

E 0.15 4 5PF .25 Lt 15 NE
* PF.23i LI 15ISE

*SPF .25 L31 WS
0.106- & 4, OP.25@ 131 NISE

0 2 4 6
Number Trimmed

Figure 43 : S1G2G Filtered by a-TL - NMSE

alpha-TL on Signal 21 -

WISE - 0.679

0.25

dpt*-T on SIpd 21
00- WigE .679

N W.BP.25 L9 IM

S .1 4W~ BW.2% L9 WISE

E 4i8OK.25 1 15 NM1Sf

0.10 4. IN* 259 L 15 NM1Sf
*SPF 25 L31 141SE

0.05 BMF.2% L31 NISE
0 2 4 6

Number Trimmed

Figure 44 :SIG21 Filtered by a-TL - NMSE

78

this signal, the kind of affect the a-TL filter was supposed to have

is finally realized. In this instance, the choice of an a-trimmed

linear filter clearly has an advantage over its corresponding linear

filter, especially for only two or four elements being trimmed.

As one might expect, when signal 2 is corrupted by both Gaussian

and impulsive noise it maintains the basic performance shown in

the previous figure. The a-trimming helps reject the impulses and

thereby decreases the NMSE without sacrificing very much in the

way of Gaussian noise suppression.

References

t Yong Hoon Lee and Saleem A. Kassam, 'Generalized Median
Filtering and Related Nonlinear Filtering Techniues, IEETranacin o0 2Q n Acoustis. Samh_ an-ina 9rCMssr& Vol.
AS-F-33, No. 3, Jun 11985,- 680. --

~1

I

VI. SUMMARY, FUTURE RESEARCH AND CONCLUSIONS

A. SUMMARY

The a-trimmed linear filter model came out of a natural

development of evolutionary filter designs. It is another step in the

process of trying to marry desirable traits from different families

of filters. IW is noteworthy in that it is a first attempt at

combining the inherently nonlinear filter characteristic of outlier

resistance with the definitely linear filter characteristic of

frequency selectivity. A viable filter design having these two

primary characteristics could be extremely useful.

The model has a solid foundation under it. Like the mean and

median filters are a subset of the L filter, so are the L filter and

the a-trimmed linear filter special cases of the generalized order

statistic model outlined in Section III. As with any new design,

however, there are problems to be overcome. Indeterminate gain

for some of the filters and a serious degradation in frequency

response characteristics for nearly all the examples considered here

are two of the major things that need to be investigated further if

the a-TL is to be a viable filter design. As this simulation showed,

too much performance is given up in the frequency response of the

linear filter for an amount of outlier resistance already achieved or

exceeded in other filter designs. There may be some specific

applications where an a-TL filter would be the best choice, but it

has not proven worthy as a general filter model, y.

so

B . FUTURE RESEARCH

OPTIMIZING THE COEFFICIENTS

Perhaps the most remarkable result of the entire simulation

was the appearance that some filters were affected less by the

a-trimming process due to their having a steep rolloff design in the

transition band. This leads to the conclusion that some

characteristic of the linear filter coefficients can be exploited in

order to minimize the effects that a-trimming has upon the filter.

No conclusive evidence was found in this simulation that actually

pinned down the characteristic or characteristics of the coefficients

that seemed to be resistant to a-trimming. An area for further

study could include a way to optimize the linear filter coefficients

so that this effect may be achieved. In addition, it may be

possible to adaptively modify the coefficients to optimize their

performance.

IIR FILTERING

Just as an IIR filter of a certain length can easily outperform

an FIR filter of the same length, perhaps using a feedback loop in

the generalized order statistic filter model could improve the

frequency performance of the trimmed linear filter. Using

feedback, the IIR linear filter can be designed to have a very steep

rolloff. It has already been shown that some relationship exists

between the steepness of the designed rolloff and the immunity of

a filter to a-trimming. It is possible that an 1IR filter may prove

to be more resistant to the damaging effects of a-trimming. This

81

may be the only fix necessary to adequately preserve enough stop

band attenuation during the trimming.

The GOS filter model would have to be modified slightly in order

to accommodate an IIR filter. A feedback loop on the time

weighting coefficients is obviously necessary in order to have an IIR

filtering operation.

MODIFIED TRIMMED LINEAR FILTER

Looking at the suggested modification outlined above makes one

wonder what would happen if there were a feedback loop on the

rank weighting coefficients (bn's). This modification was made to

the a-trimmed mean filter as outlined in Section II. The

modification was called the modified trimmed mean (MTM) filter

and performed at least as well as the a-TM filter.

Recall that the MTM filter provided a feedback loop that

trimmed a number of elements from the active window based on a

range parameter q. The median, mk, was selected from the

window and then all elements outside of the range [I Mk ± q] were

trimmed off. Having the number of elements trimmed become

dependent on the data allowed the filter to act as a median filter

when much of the data fell outside the range and like a mean

filter when there was very little deviation from the median. The

range parameter was chosen based on a priori knowledge of the

noise.

This scheme may prove particularly useful in the case of the

trimmed linear filter. A modified trimmed linear (MTL) filter could

outperform an a-TL filter for two reasons. As the simulation

82

showed, the major degradation in performance occurred when just

two elements were trimmed. If the signal were particularly noisy

with many impulses, the degradation would not be significantly

greater than for a lower fixed number of samples trimmed.

However, the real payoff would occur during the times when no '

elements were trimmed. The MTL filter would allow for the

possibility of not trimming any elements during portions of the

signal that did not require trimming. This would allow the full

effect of the linear filter to be felt.

By choosing q such that an element was trimmed for only

extreme cases, a filter may be developed that has some resistance

to outliers while maintaining a good frequency response. This case

would be extremely interesting to pursue. It may give an insight

to just how sensitive a linear filter is to trimming of any kind.

C. CONCLUSIONS

As can be seen from the development of this model and hinted

at by some of the results of the simulaton, the trimmed linear

filter holds some promise in hvin up to its expectations as a

frequency selectve flter nth outlier resistance properties

Howeeras the samulaton also showed. the a- trimming process

can extract a fairly high price from the frequency performinc of

a linear FIR filter for a little resistance to outhiero

This is the rmo drawback of the a- T' filter *leigr The

stion on outer reitance showed that this filter riesr o'ud

83

have a comparable degree of impulse rejection to the a-trimmed

mean filter in the low pass case. It at least did a fair job at #

rejecting outliers in all of the cases considered. In addition the

results were surprisingly good for the BPF case. Trimming two or

four elements from the BPF designs in the simulation produced a

marked improvement in outlier resistance in the NMSE

calculations. Using a more sophisticated trimming scherr ay ive

even better rejection of impulses.

As the possibilities discussed in secton B above show. there is -%

still hope for the a-TL filter. The simulation showed wveral

interesting relationships between ome of the filter *eq

parameters and how the a-trrung pren aftocted Ow

performance of C-* linear filtes Somew of thewe rmy wtw jwt

in helping to improve the prornmaw of the a. T! I -tt

point that it is a ueful deg i for more thar a -,- •

" 9 125 A OINERALIZATION OF ORDER STATISTIC FILTERS: THE
ALPHA-TRIMMED LINEAR FILTERMU AIR FORCE INST OF TECH
URIGHT-PATTERSON RFD OH D I RIDER 1967

UNLSIFIED AFIT/CI/MR-S?-101T F/O 12/3 N

I~wwt
LUM1I-

I1-25 6

BIBLIOGAPHY

Bovik, Alan C., Thomas S. Huang and David C. Munson, Jr. 'A

Generalization of Median Filtering Using Linear Combinations of

Order Statistics." IEEE Transactions on Acoustic. Spech. and

kgW na L nj ing, Vol. ASSP-31, No. 6, Dec 1983, 1342-50.

Lee, Yong Hoon and Saleem A. Kassam, 'Generalized Median

Filtering and Related Nonlinear Filtering Techniques."

Transactions on Acoustics. Speech. and Sknal Processing, Vol.

ASSP-33, No. 3, Jun 1985, 672-83.

,I

s A WIrIs- sWun aruru ENwanIE Ias. - % .

APPENDIX A

CALCULATION OF TRANSFER FUNCTIONS

.5.

t.

86

This appendix contains some of the specific details used in

calculating the transfer functions for the simulation. Several

aspects of the model and computer system require some detailed

explanation for those readers interested in the actual development

and implementation of the model. The details described in this

appendix are 1) Gaussian and Laplacian random number

generation; 2) the histogram of calculated data and its

implications; 3) window selection for the input data; and 4) error

calculation to give an idea of confidence in the simulation.

RANDOM NUMBER GENERATION

The Pascal compiler used on the IBM 4341 system provided a

random number generation function that was uniformly

distributed. In the GOSF simulation it was necessary to generate

both Gaussian and Laplacian random variables. This was done using

a transformation of variables.

In order to transform variables from one distribution to

another it is necessary to set the probabilities of the desired

variable equal to those of the known variable as shown below for

the case of a known uniform rv and the desired Gaussian rv:

U nl'

f dx = J exp{-y2/2oy2 dy/2-to (Al)0 -n1

where u is a uniform rv and n is a Guassian rv with standard

deviation a. However, we know from basic probability theory class

that the normal distribution cannot be solved in this form.

87

Therefore, instead of solving the above equation we solve

U r

J dx = f (y/a2)exp{-9/2a2 }dy (A2)
0 0

where u is the same uniform rv, but r is now a Rayleigh rv. This

equation can be manipulated and solved for r as a function of u.

The Rayleigh distribution is obtained by looking at a two

dimensional space that is Gaussian along x and y. The radial

variable of this space has a Rayleigh distribution and the angle

variable is uniformly distributed. Transforming the known

uniformly distributed variable into a Rayleigh and generating an

additional uniform rv will allow an indirect transformation to two

Gaussian random variables. The above equation is solved for r in

terms of u by substituting variables, integrating and solving. The

final equation becomes

r - 1-2o~hn(I-u), (3)

Then combining this Rayleigh rv with a uniformly distributed rv 0

We make the two independent Guassian random variables

x = r cos(e) (4)

and y = r sin(0). (A5)

10? 0 I

88"

The same approach is taken for the Laplacian (or double-

exponential) case, only equating the probabilities is directly

solvable. The equation is

u d

J dx f J(V/2o) exp{- (v2/o) M }dy (A6)
0 -d

where u is the uniform rv and d is a Laplacian rv with standard

deviation a. This equation is solved by dividing the right integral

into two parts to get rid of the absolute value of y. integrating

and solving. The result gives

d = -(a/r2)ln(i-u). (A7)

The results for either case can be quickly checked by noting

that as u--u then r--W and d--.CO. Likewise, as u approaches 0 -.

then r--0 and d-40.

A test case was run for the Gaussian distribution. Twenty

thousand uniform random variables were generated and were

transformed to two sets of ten thousand Gaussian random

variables. The results including the expected Gaussian percentages -

are shown in Table Al.

* UU U * I U U S U - Uo*

89

Table Al: Random Number Transformation

Cumulative Cumulative Cumulative
z/o *uniform #Gaussian i #Gaussian 2 Normal S
0.5 2077 3875 3882 0.3830
1.0 2000 6834 6881 0.6826
1.5 1948 8646 8655 0.8664
2.0 1905 9539 9526 0.9544
2.5 1930 9866 9860 0.9876
3.0 2080 9978 9968 0.9974
3.5 2038 9992 9994 0.9996 I.

4.0 2044 9999 10000 0.9999
4.5 1979 10000 10000 1.0000
5.0 10000 10000 1.0000
Total 20000

WINDOW SELECTION

One of the most difficult problems to solve in setting up the

simulation was the method for calculating the transfer functions

for the a-trimmed linear filter. As was explained in the Chapter

IV section on transfer functions, it is not a simple matter to find

the frequency response characteristics of a nonlinear filter that is

designed to reject impulses on the input signal. An attempt to find

a simple deterministic method eluded all efforts. For this reason a

probabilistic measure was attempted.

The first problem encountered in using Gaussian noise as the

filter input was one of leakage. The transfer functions were

adversely affected by noise near the ends of the data stream. This

problem was easily alleviated by windowing the input data.

Several different windows were tried. The Blackman window was

chosen based on its performance in calculating the transfer

V

9 *.. * ,9U- ,9 '~. ~ ~. ,*'9"* ~ .9.9 %~.~* % '

90I

function of a linear filter with none of the elements trimmed. By

visual inspection it was determined that by using the Blackman

window. given by

w(n) = 0.42 - 0.5cos(2nn/(N-1)) + 0.08cos(4n/(N-1)) (A8)

for On5N-1, the linear filter frequency response was most closely

determined with the random input transfer function calculation. In

fact, as was discussed in Chapter IV, the NMSE would go to zero

when using just two trials of random data input. This is due to

the fact that, of the windows chosen, the Blackman window had

the best leakage characteristics. One needs to take into

consideration, however, that in the determination of the transfer

functions for the a-TL filters the relatively poor resolution

characteristics of the Blackman window function may adversely

affect the results, but cannot be avoided.

HISTOGRAM DISTRIBUTION

A somewhat more interesting problem came about in the actual

calculation of the transfer function. All of the data about transfer

functions presented in this thesis is based on 500 inputs of 256

samples of white Gaussian noise. Table Al in the previous section

showed how well the noise fit the Gaussian distribution and Figure

Al shows the autocorrelation of 2048 samples of this noise. The

correlation length indeed appears to be very near zero.

However, the first attempt to calculate the transfer function of

a particular filter from the 500 trials was done by averaging each

%gb*,

.. 'J I 'V ' .,' v" '.'. v\ '. % '..
.

, ' ".*".*.- . .. " W , "d :" "m.*
0

"e' -L'LeLe~ .- - -'2e0..' ''

91

r-.JTOCZRRELAT IOI

.-e

S. 68-~

S. bCO-

-0.

-0.26 |, , , , ,

a 5 18 15 20 25 38 :5 40 45 5

Figure Al Autocorrelation of 2048 Gaussian Samples

92

of the 500 transfer functions on a point by point basis. This

procedure produced transfer functions which were unexpectedly
'-No

"noisy' in nature. That is to say, even though the basic shape of

a given transfer function was believable, there were unexplained

bumps and spikes on top of the shape, all of which were positive.

Correcting a small error in the FFT algorithm and fixing a problem

with the number of significant digits in the data generation

program only alleviated a small amount of the apparent noise on

the basic transfer function shape.

An amount of uncertainty in the calculation was to be expected

since the transfer functions were generated using a random input.

Indeed, a small random deviation from a smooth shape was

observed. However, on top of this fluctuation were unexplained

spikes at various frequencies of the transfer function. Initially this

was explained as a frequency selectivity of the a-trimming process

or perhaps some sort of resonance was introduced by the
trimming. But, as was explained in Chapter V, the a-TL filter was

later found to not have any irregular frequency responses.

The answer was found when histograms of transfer function

values at given points of the function were generated. This showed

that the distribution of values at each point was not very

symmetric over much of the transfer function. Only in the

frequencies of the pass band of the filter was the histogram

anywhere near symmetric. For most of the rest of the points the

histogram had the majority of the points grouped around some

relatively small value with an exponentially shaped fall off of

93

points away from this main hump. This led to the conclusion that
a

averaging the 500 values may not be the best way to show the

central tendency of all of the values at each point of the transfer

function. This conclusion was further supported by more

investigation into the histograms of the data which found some

extremely large, unexpected values.

Figure A2 shows a transfer function for a band pass filter -.
calculated early in the simulation (the function is symmetric about

0 Hz. at sample 128) using point by point averaging. The arrows

point to individual values of the averaged transfer function and

identify which sample they are. One can see that the general

shape of this transfer function is the same as those for some of the

band pass filters in Chapter V with some impulsive-type noise

added to it. Figures A3 through A6 show some representative

histograms of the data. Specifically the histograms are for points

91 though 94, respectively. The vertical scale shows number of

occurrences in a particular bin with the horizontal scale being ten

times the actual value of the transfer function at that point for

that trial. (note: the transfer function in Figure A2 was scaled by

a constant after the histograms were generated; therefore, the

average of all of the points of the histogram divided by ten will

not necessarily give the value of magnitude shown in the graph of

the transfer function.)

All of the histograms of the data in the stop bands are of this

same basic shape. They show that the data is skewed to the right.

Thus the central tendency of these distributions may be better

mow"

94 F

TRAJEER FL*JCTION

-2I

bg
*1.~

4~! - !NIU

0 4' I3 O 2 4 13L 6 ~ 4 b

-Ii'P
-2 , , S.-

S 2S 40 bG6 3 LO 120 L4e) t1 L31(2S: ZZe 240 Z6, ,,

II ~SAPLE~freq,)

Figure A2: Transfer Function of BPF2500s L31 (linear scale)
r **:5, :* .' .. ,' *~W - * *' *~* * *,* * ~* * -* - * W~ S~

5 5
' * -

i. ~ F.. .~

95

bl-w

.I

So-m

5%

I|= -- SIGNq.

S:FLE T

41 1

Figure A3: Histogram of 500 Values of Sample 91i :i

- "V ..

.. • n - - i i ' :: I " ' -

SVIPLED DTA

76-

-SIGt'$X

56-

0 IS 29 38 4 3~ 5a '(f 3 3-3 L .30
5SE1LE

Figure A4: Histogram of 500 Values of Sample 92

97

OWPLED DWIA

~20

Is-

6 1.6 260 3 6 43 53 te A. 33 a3 it~

Figure A5: Histogram of 500 Values of Sample 93

98

b
WWILED DATA

bl-

1

3I 2- SIWt4II-

i g 1 2 3H is to g ?o f 35 1Vo m5: tPLE

Figpure A6: Histogram of 500 Values of Sample 94|

.u'
* *t* ~ PS S - C AA. fS %% 5 |

99

described by the median rather than the mean. However, the real

evidence for this conclusion comes from noticing the trials that fall

into bin 100 in the data for samples 91, 92 and 93. The histogram

generation program limited the value of any individual trial to 10.

Any occurrence greater than 10 was put into bin 100. So the

actual values for these large occurrences were printed out. For the

single large occurrence in sample 91 the value was just 11.5.

Likewise, for the single occurrence in sample 93 the value was

13.1. However, for sample 92 there were two large occurrences.

One was only 11.5, but the second was 169.8, nearly 15 times

greater than the next largest value! Since there were only 500

trials to average over this one extraordinary trial was able to add

more than ten percent to the final averaged value at that

particular sample.

This was the main reason for using the median of the data at

each point to determine the "most likely" value for the transfer

function. Yet this brings up another interesting point; what kind

of certainty does this calculation provide? Is this simple approach

to finding the transfer function actually valid in this case? These

questions are discussed in the next section.

ERROR CALCULATION

The last two sections bring up some questions about the validity

of the transfer function calculations used in this thesis. The

windowing of the input data is necessary but forces a choice

between some leakage/resolution trade-offs of various windows. The

somewhat strange histograms of the calculated data along with the

100

peppering of large outliers in this data introduces some additional

uncertainty into the measurement of the transfer functions of the

a-TL filters. The question is how far off are the measured transfer

functions?

The choice of the window to use on the input data was

straightforward. Of all the windows tried, the Blackman window

did the best job at reducing the leakage problems encountered in

the transfer function calculations. The different degrees of

resolution between the various windows made no real visible

difference under the criteria selected for choosing the best window.

As stated before, the criteria was to match the impulse response

frequency characteristics of a linear filter with the random input '.

transfer function calculation of the same untrimmed linear filter.

The Blackman window performed the best since it had the best

leakage characteristics of all the windows tested. Once the leakage

was reduced enough the transfer function matched almost

identically with only one trial of random input to the expected

frequency response of the linear filters. Therefore, it is assumed

that it would be difficult to obtain better results for the transfer

functions with respect to the window used.

There still may be some question in regard to the method of
Waveraging" the transfer function trials, however. In order to

address this question some confidence intervals were found. During

the median selection it was a relatively simple manner to choose

other values at each point. Various "confidence intervals" were

generated in this manner by selecting the 10 and 90 percent

"S

'.5

101

values to give an 80 percent confidence interval, for example. This

process gave a picture like that shown in Figure A7 for the skinny

band pass filter of 15 elements with 2 trimmed, BPF2500s 15T2.

The figure shows the ideal transfer function of the linear filter and

the transfer function of the filter with 2 elements trimmed

selected by the median of 500 trials of Guassian noise as the input.

The figure also shows 10 and 90 percent lines for the transfer

function with 2 elements trimmed. These are the 50th and 450th

largest values on a point by point basis of the ordered data from

the 500 individual trials. They are normalized by the same

constant as was calculated to normalize the median response to

0dB in the pass band. This gives a good idea of the range of values

this method of calculating the transfer functions covers. One can

see that if the 10 and 90 percent lines were properly normalized

they would come fairly close to being identical to the median line.

The only major difference is the wide variance at the dc point as

was discussed in Chapter V.

A similar picture is shown in Figure A8 for the same filter with

6 elements trimmed. The major difference between the two figures

is the expected increase in variance between the 10 and 90 percent

lines for the filter with 6 elements trimmed. One may also note

that it appears, by taking into account the possibility of getting

the response of the 10 percent line in the pass band and that of

the 90 percent line in the stop band, the frequency response for

the filter may be nearly flat! In practice, however, one finds that

this is not true. For an individual trial of Gaussian noise input the
,.Jm

102

315 Tb SU CODEMt

-9m-

if I

0. M E.1 3 1 e . M 1 'm . 3 . C .K E E. M . ..

FRED C(v2P1

.

Figure A7: 80% Confidence Interval for BPF2500s 15T2

103

115 T2 OR MZFIE

UU

-MED DJ

S. see 2. D5 E. 133~ 1C s .'I .Z5 E.(Z!3 3, .15 3(. 4(c C. 53~ E. 5.11
FRED (w/Yi)

Figure A8: 80% Confidence Interval for B3PF2500s 15T6

,. i

104

transfer function always maintained the same basic transfer

function shape. The shape was simply much more "noisy" than

the relatively smooth response given by the median of 500 trials.

These confidence intervals merely show the magnitude of possible

variations within a transfer function for a single input.

This explanation makes sense when one takes into account the

nonlinearity of the a-TL filter. Just as for the simple median

filter, it is not possible to predict what the exact frequency

response of the filter will be for any arbitrary input. It can only

be said that the filter will have a general frequency response most

likely represented by the shape given by the median of 500 trials

of random input as shown in this thesis. This is just the same as

saying that the median filter is a low pass operation. The median's

exact frequency response cannot be determined without knowing

the input. It is only known in general that it will act in a low

pass fashion with an approximate cutoff and somewhat variable

stop band performance.

*9,

5%"

p"

a,.

APPENDIX B

COMPUTER FILTER MODEL

106

In order to investigate the characteristics of the generalized

trimmed linear filter I developed a program that would implement

the various types of filters, a program to generate input signals to

filter, and some programs to compare performances of the various

filters on a set of input signals. The filter model program is simply

an implementation of the model described in the previous section.

All of the filters we are interested in using as comparisons are

subsets of this generalized model.

LANGUAGE SELECTION AND MODEL STRUCTURE

I chose to write the program in Pascal instead of the perhaps

more obvious choice of the more computationally efficient FORTRAN

for two reasons. First was that the model structure seemed most

logically implemented using pointers with a linked list architecture.

FORTRAN does not have a pointer data type and, therefore, a

linked list structure would be difficult to implement. Second, I like

the stronger data type checking in Pascal or, rather, I dislike the

weak typing* of FORTRAN. This was an important consideration

due to the moderate complexity of the model combined with the

slight degree of complexity of the pointer/linked list structure to be

implemented.
The reason I chose a linked list structure was that it most

efficiently allowed me to add and delete elements from the active

filter window and provided a relatively efficient sorting routine.

Another good choice might have been to use an array structure for

the windows, but I discarded this as less efficient in the two main

manipulations of the windows: adding and deleting elements and

I.z

107

sorting. The efficiency of the sorting routine becomes important in

this model since the window must be re-sorted at each step

through the input signal. The insertion sort routine for a linked list

structure takes the first value and calls it the smallest value. Each

successive value to be sorted is inserted into the proper place in

the sequence taking care to keep track of the smallest value.

PROGRAM SET DESCRIPTION

The following is a brief description of each of the main

component programs used in the simulation as well as a discussion

as to how they were combined to form the large, repetitive

program MEGAMEDIAN. The descriptions here are limited to the

major Pascal programs. Many smaller usually machine dependent

programs were written to produce graphical outputs and to better

control the data file structure on the IBM 4341. Since these

programs would be of little use to the general programmer they

have been omitted here.

MAKEDATA: This program allows the user to generate an input

sequence that is to be filtered. The input may have any

combination of the following possible components: constant levels,

ramps, steps or impulses, sinusoids or blocks of sinusoids, Gaussian

noise, or Laplacian noise. In addition, the user controls many of

the variables associated with each of these signal components

including location in the signal, magnitude, duration, and "'

variance, to name a few. The user also picks the number of

samples in the signal. This value is stored as the first data point in
a'

I

108 :

_'.

the data file and is used by the filtering and Fourier transform

programs to properly handle the signal. In addition, once the

desired signal has been generated the user may store it in one of

two different files so that one may be used as a reference while

the other is varied. The user also has the option to go back to

either of these two files in the future and add onto the existing

signal.

FREQ: This program takes the discrete Fourier Transform (DFT) P
of the input. The DFT is implemented with the decimation-in-

frequency fast Fourier transform (FFT) algorithm. The user is

prompted for which data file to use as the source for the Fourier

transform. The options are either of the two signal files created by 1

MAKEDATA, the output of the autocorrelation program, Rx1 , or

the output of the filter program. If the input signal is not

factorable by 2 then the remaining elements are padded with

zeros. After the FFT is taken, the real and imaginary parts are

converted to magnitude and phase since this simulation is

primarily interested in the magnitude of the transform. The user

is then given the option to have the output converted to a log

scale. Finally, the user has several options to store the output in

different files for later manipulations and calculations.

FILTER: This program obviously implements the filter model

discussed in Chapter III. It is only important here to note the

inputs the user may make. The user controls the window size to

:.S

F" - ,.. ' 4t' I .i(.(% ,*. \rP'-, _e U"
5

*'.:" ~ . .~.,"# e ,,,," " " ""' ", ,"."/ ,'" .' .."" ' ""."",

109

be used and then selects the type of filtering operation to perform.

Once this choice has been made the program prompts the user for

the necessary inputs to complete the filtering operation.

MSE: This program calculates not only the NMSE between two

inputs, but also the NAE. In addition the program generates two

output files to be graphed. The first merely combines the two

inputs into a single file so that both graphs may be plotted at the

same time. The second file is a graph of the difference signal

between the two inputs. These two graphs are useful not only for

simulation insights, but also for troubleshooting. The user has a "

wide range of choices to select which data files to calculate the

errors between. The program can handle files stored in log

magnitude as well.

MEGAMEDIAN: This file creates transfer functions. MAKEDATA,

FREQ, and FILTER are all procedures in this very large program.
The main program loops through these three programs as well as a

procedure to calculate the transfer function for each of the 500

trials in order to generate a transfer function for a particular

filter.

The listings for these five programs are Appendix D.

-'='.', ".-..'-.'',., '=,'..'..2-", .,''.''-.-'.''.''.''."", ," t,'. .''." .",,''.", ""," ," " •" ", "= " ' "" .'.. '. "- , ' "-" ' " .' "%"", % p.

APPENDIX C

SET OF LINEAR FILTERS USED

S

Table C1 Filter Coefficients for LPF300 L9

FII N ITE IMPULSE RESPONSE -FIF.-
LINEAR PHASE DIGITAL P:LTER DES!I1K
REMEZ EXCHANGE LG..F-'ITHM

AN .DF..... =S FILTER

FILTER LENGTh = ---

.. " IMPULSE NF SE t
Hk 1; 23252 7 22 2- C; --H I. .233:22'0:E+.:, = H o,

H(= .4C355 0 4CE-. , H
H -.' = .5' :1 -:') 770E-' H,
H 5" = . 5 .:'.E-') = H"

BAND I BAND. .

LOWER BAND EDGE OC..00000 .05000000 p

UPPER BAND EDGE . 010::u000." .

DES T RED VALUE . cO.' C' . ,: .
WEIGHTING2. 000000000 1 . (C 0

DEVIATION 2 21 125.7,eC. . 42250 0
DEVIATION IN DB -17 .5079':rOC -7.

EX TREMA FREUENC I EE

*.. ~ - r. . 1

MI

112

Table C2 Filter Coefficients for LPF300 L15

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORITHM

BANDPASS FILTER

FILTER LENGTH = 15

* *** IMPULSE RESPONSE ***
H(1) = .11714120E+00 = H(15)
H(2) = .4280550E-01 = H(14)
H(3) = .45621000E-01 = H(13)
H(4) = .50370080E-01 = H(12)
H(5) = .54310600E-01 = H(11)
H(6) = .57236030E-01 = H(1))
H(7) = .58985310E-01 = H(9)
H(8) = .59580910E-01 = H(8)

BAND 1 BAND 2
LOWER BAND EDGE .000000000 .050000000
UPPER BAND EDGE .010000000 .500000000
DES IRED VALUE 1. 000000000 .000000000
WE I GHT I NG 1. 500000000 1.000000000
DEVIATION .131174300 .196761400
DEVIATION IN DB -17.643010000 -14.121190000

EXTREMA FREQUENCIES
..01 0(')C .5 O:)C)5'0C" 0851562 . 15 I .- 2. . 179-
.2882813 .3585938 .4289063 .500000')0

- ~ ~ u.

113

Table C3 Filter Coefficients for LPF300 L31

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE A.LGORITHM

BANDPASS FILTER

FILTER LENGTH

•,-** IMPULSE RESFONSE *** V
H(= -. ! 4616, - Er 7' 1"
Ht 2) •14994 30E-'I = Hr 30)
H(A " =i 0 I ,-::50"E-0 = H 27 " ...
H(4 .1 076500E-.. r -01. H 6) 2c..:

H(H(27

H(6. &06C0-~ H(-6)H(5) = I995-0E-1 - H 2-
H(6~ - .23948930E-0 = H' .

H(8) 33685870E-0 I H(2.4,
H(9) = 38617050E-01 = H- (-I .

H (,....) 4= .4 18480E-'1 H, 2. 2
H (i . 1 4 '7 66 (",1C: '1 H(2~
H(12) = .51456090E-01 H H(2)'
H(1.-) = .54554890E- = H 1 P)
H(,4;. = .568826'00E- 0 1 H(!S)
H(15) = .58285860E--0! H(1)
H(.6)= .58740180E-0) = H1 6.-

LOWER BA4D EDGE 0 . 0 000 0,
UFPEF -ND EDGE O l'..x:.u .0C).00
DESIRED VALUE 1 C):c0 0 . 000 00 CA
WE I G I T I . . C 1 . (000000
DE Ik AT I ON 0393855830 .039385830

DEVIATION I N DE. -28. 093170:: -.. .09.31 7"x:.

EXTREMA FREQUENCIES
0)00) C, 100C)C C) 0 5 00000 (C 06767 "3 ":'-2- 6S

.12 6 1719 . 159,75C .19457;12 .227744 .22 C
.-..7, !325C;0 .3644531 ', 4 .

1,66015- .10S6

;:* * * * * * * * * * * * * * * * * :.* * * *. * ,*, *,. * * * *. **: * 4,, 1 * W. : * * *: * * *, ,. .* ,,, ,* ..* .."
"Ill t. SAr I 41. 1';.

114

Table C4 Filter Coefficients for LPF300 L63

"Oh

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORITHM

BANDPASS FILTER

FILTER LENGTH - 63

$**** IMPULSE RESPONSE *****
H(1) = -. 18686920E-02 - H(63)

H(2) - -. 15462900E-02 - H(62)
H(3) = -. 21003040E-02 - H(61)
H(4) - -. 27069680E-02 - H(60)
H(5) = -. 33382180E-02 = H(59)
H(6) - -. 39567210E-02 - H(58)
H(7) = -. 45167690E-02 - H(57)
H(B) - -. 49655480E-02 - H(56)
H(9) - -. 52443800E-02 - H(55)
H(10) - -. 52912720E-02 - H(54)
H(11) - -. 50437710E-02 - H(53)
H(12) = -. 44416870E-02 = H(52)
H(13) - -. 34307100E-02 - H(51)
H(14) - -. 19657400E-02 - H(50)
H(15) - -. 13794770E-04 - H(49)
H(16) = .24416860E-02 - H(49)
H(17) - .54016280E-02 - H(47)
H(18) = .88445020E-02 - H(46)
H(19) - .12731530E-01 - H(45)
H(20) - .17000680E-01 - H(44)
H(21) = .21571820E-01 - H(43)
H(22) = .26347610E-01 - H(42)
H(23) - .31215140E-01 - H(41)
H(24) = .36051430E-01 - H(40)
H(25) = .40727130E-01 - H(39)
H(26) = .45110720E-01 - H(38)
H(27) - .49074520E-01 H(37)
H(28) = .52500080E-01 - H(36)
H(29) - .55282880E-01 - H(35)
H(30) = .57335970E-01 - H(34)
H(31) = .58594040E-01 - H(33)
H(32) = .59018030E-01 - H(32)

BAND 1 BAND 2
LOWER BAND EDGE .000000000 .050000000
UPPER BAND EDGE .010000000 .500000000
DESI RED VALUE 1.000000000 .000000000
WEIGHTING 1.000000000 1. 000000000
DEVIATION .002450794 .002450794
DEVIATION IN DB -52.213810000 -52.213810000

EXTREMA FREQUENCIES
.0067708 .0100000 .0500000 .053645e .0630208
.0755208 .0890625 .1036458 .1187499 .1343751
.1494794 .1651046 .1807298 .1968759 .2125011
.2281263 .2442724 .259B973 .2760428 .2921884
.3078132 .3239588 .3401044 .3557291 .3716747
.3880203 .4041659 .4197907 .4359362 .4520816
.4677066 .4838522 .5000000

I15

Table C5 Filter Coefficients for LPF1500 L9

FINITE IMPULSE RESPONSE (FIR:
LINEAR PHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORITHM

BANDFASS FILTER

FILTER LENGTH =

***IMPULSE RESPONSE *4
H 1 = -. 47.852 . E-'2 = H
H (2) = .130.(C1'E-'1 = H:

H)= . 1.5 0750E+00 = H'"

H(4) = .525620E+--) = H- '
H(5) = .04-6960E+00 = H(5;

BAND I BAND 2
LOWER BAND EDGE . C)))0())) 200'0000

UPPER BAND EDGE . 1 000'0 .00 00000,
DES I RED VALUE 1 . 0 0000 C::C .

WEI GHT I NG 1 . 0 0 C)(:)00 . (.;) 0
DEVIATION . 136449700 . 1)4961000
DEVIATION IN DB -17. 300560000 - 19. 579420.'00

EXTREMA FREQUENCIES
* 1 256:77:0 7 ,,I C n

.. [

.4

5'I

dk~

116

Table C6 : Filter Coefficients for LPF1500 L31

FINITE IMFULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORITHM

BANDPASS FILTER

FILTER LENGTH = -1

*•*** IMFULSE RESPONSE ***.*
H'. 1 = . !895m240:E-..)2 = H' 31 ,

H' 21 .I79o450E-,2 = HD
H(. = -. 134o7520E--('2 H" ,
H' 4 = .2655380E-02 H, 28)
H(5) = -. 7(84C40.E-(2 = H2-
H(6= -. .8907CE-'3 = Ht 26'
H(7) = I5511050E-C,1 = H ('25
H(8) = .21470150E-C1 = H '24
H, 9) = .94669810E-02 = H(
H C = -4225 C9 1-E01 = H ' 2
H (I"= -,51776640E-0I = H(1
H(12) = -. 41209470E-o1 - H. 2 0

H(1. = .298298bE-Ol = H(1 9)
H(14) = .14b16OO6E+uO = H(18)
H(15) = .25564!9oE+'o)0 = H(17)
H(16) = C050 7 6 E+00 = H(1 V,

E", 14D 1 ~BANID
LOWEF BAND'iiij EDGE k. 00,:.,00 .(. ('':,',.

L'ER B."'I.AI D EDLGE .1,1::,:(r:. ,: . :. C
DESI REE) Vi LUE I . 9Ch)(,0() .0 0

WE I GHI I NG 1C. 00.000000 I).0:,0(.:,000(.
DEV I oT 1014 .0015271 1---, 0 152 1 ?5
Eli-I, ION I!1 8' -5e . 34483 '.-'.(.u -5 .3443"'">(.

EA 1 FEIIk FREOUENCIES
- --0'.- . .147750,:u0 .07175 .!7,.: 8

. , .(.. . 22072 11 66.22 41 6 252(.:: .@

..1041 -4 9. .- ' 182 .4i-)4 68- .

.4 ',4 ,* 11 .5 ,

%

* ****** *** *** *~ *'** ** *** * *** ** ***** ~*'4 *'~ ** *4' *'4 * N

117

Table C7 :Filter Coefficients for L.PF1500 L63

-..

'.4,

4,%

4%
4'
"S

11F TL T TE .M PUL SE RE1E-. S O r1 : 7 ;: T. F,

H EARI PHASE IT I G3) I L F . L EfleI

R E* lyE1- . EX C H A\1G E A L. G 0 R I T H M

F~r. I4... F SSE F 'L. E:

!IL.TEF. LPEI'IC1"l- =

H(R, jj-F c;, lPE W,

H(1. 11 A.9 '1 3 -) 4) = H~ 6.

H (2. C) . I 4 1 7 779 7,0E - 54 H * .

H 7) 0 440- H I~

H A 7 7- 2- ~1 C)E 0 -

H 5 .~j ' E ' i

H 61 17" o(,)E 0 Hi 75B

H 7.8A 4 2f!)4

H 1 10 4,7 - CE 07 4

H .1 1 1-, 2)- 2- E ()'-7 5-

H 1 j - 4 '"')E--f7) - 1 5I

H.' 1 ' - ' T

H' .1 . - .7 F . H(43

H J 477,5(Z4,C' ''

1- . AC 0 044E - 01 I(4 8

H'1 4 ~ 82765E- -0 H' 47

H 1~~ 7, 1 444, .OCE - 1 FI 4

H H, A.C(P ,)::*

r 'A .- I'J-7.024 7--E-01 7

H 222 7''*' 14 E+ 4 0 E*' - 0Z, ' 2

HEE i 24E2 8 122 425 C EII*= H 4 C)

7,~,TO I1. DE1-Q .;~ 2' '. 4 -)6)---C' I I 1 77

1 ~ ~ 4 4-;

54dRD EM ,.*.,,,;j.. .. k,,

V- 1.)~*~ ..

1181

Table C8 Filter Coefficients for BPF2500s L9

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORITHM bp

BANDPASS FILTER

FILTER LENGTH 9

***** IMPULSE RESPONSE * *
H((i = .2":384':E+0 = H' 9
H(2) = -. 066986b()E-07 = H(8)
H i 3: = -1 478193' 0E+:"0 = H 7)

H,' 4) = 2-,='"i-. 5()E-,0 9 H.
H(5) = . i12031E+. = H i 5)

BAND 1 BAND 2 BAND 7.
LOWER BAND EDGE . C)000000 2 3000000 2-000 00
UPPER BAND EDGE . 180000000 .- .50000000
DES I RED VALUE . I:C)0(_)00000 1 . 00 .

WEIGHT I NG 1 . 0000)00C) 1. 400000000 1 0000o
DEVIATION .273256500 .195183200 2725500
DEVIATION IN DB -11. 26a580000 -14. 191140000 -11.260580000

EXTREMA FREQUENCIES
0)00)00 .00 0 . 18000C000a.)C) .2-, 0002c'''

.. 899999

.

%I

SI
,: , ,T : , , .: , :€: . , : ;t : l . €: ,.) ,,.... . ., ;'S

S.

S

V,. .'V%,% ~ V t~ V% %S.. I~e.t

119

Table C9 Filter Coefficients for BPF2500s L15

FINITE IMPULSE RESPONSE (F]'H-%..4

LINEAR PHASE DIGITAL F!LTER DESIGN
REMIEZ EXCHANGE ALOR: THI-

BA"NPASF I LTER

FILTER LENCTH = 15

k . '. E E.. . * 4
H. 12 = .2 741:E- = H'" I r'
H' ? C.) 6 7417 (D SI = Vi14

H(17 -- ... : E U - =
H" ".' = .i06J74 = H . ,

H 5::. --.- , = H i
H(6. - . 01 1 0, ,.E+'C. = H I C
H 7) - . A.--,400E--4 - H ' T
H(8) " .2"S48760E+00 = H 8

EAIN D I 'ND 2 -...N-

LOWER BAND EDGE .000000000 .2000(:x:., . 5s.C 00
UPPER BAN. EDGE 1 500C, C,0"0 .7Cj.:C0()
DES I RED VALUE0C. 1. 0

WE I GHT I NG 10. 000 0000 10. 00000C30C 1, i (...' C... .

LE",' I ,T l 'T I: :9C:2191' ," 7 " .

E,,R , FREQUENCIES

2 -7u.c)c0:) C, - :500 ,:; 3773 3 .. 4 ...V . C -d 01 S 4.," 7..,,

-,'s

3VA

74.'

120

Table CIO Filter Coefficients for BPF2500s L31

41 t-1 P MULS E E3PON--SE ~~.

H ; ' 4 ="11 "...... -"'--"

H(6) =1,94914QE-)D = H 2 6)
H, 0, 4 b 14 7.' 4__ C) r..E C " : -)';. H Zi -41-

H(5y " = 7 -. 13E-06 = H 2-7
H' C0 = 184144E-C' -= H 2- 1

HI 1 7-. 1 647E+cQO(D HH "17 = , :.878!Q30E-05 H 1

H(128 = "-E+ ' = H,-

H(1Z9i = .1924917'Eu-5, - H "

H(1) =-. /1 ,/'Q),--.I H

H .I4 =.1, 9 0 E 0
=

H

F 1 2 , 1 1 ' , 4 :-' ,"SE+ -. _.,H 13) = -. !949i1E-05 'L -. 1
H 14) = -2!2990.(-4E+0 = (

FBi\D ! E-AN 2 -
DOj-**R " r..... EDGE 000 03 IL' .(0

IUF''EF. A44" EDGE 1 15CCC'"5
DESIRED 'VALUE •- -
W E ! Gr T 1IS .G 1t J" -:(C0 "0 :.' 1 .O: :.u:' 0 .' .: ". ;""m

DEV I, T 1 . Ci C
... DE -4 7 . ' 4 T , " "" ., I AT T 0,1 IN DE,. 4-7 42.7:, 5 C :'.. -47. 6" 00 ,. ''_ _ -4-7. 4. 2, 7.,........

EXTRENA , FREQUENCIES

a i:'-.2':'5 . i5 00 _ : ,,(._.... ~ .2a ' C9 _" ,.,.. .
a ± 5C

a .,c~35000c . :578125 -7m6 H L .' " ..

* 4691 .0 6 50C)000

..~~ ~ ~ ~~..... "......... .. >:..:

k.-

Lmw 441-r *e -1q P -. 1'If 4I

Table Cl • Filter Coefficients for BPF2500s L63 "

S.

S.
S.

-J

'S

a<

. * ~~"' " -* L,,...rw unFuFn

F'INITE !MFL.SE RESP~ONSE FIF
L INEAR; PHASE DIG A GL PILTER DSME-1
REMEZ EXCHAGE4 ALGOFT.TH,' .

BANDPASS FITER_

FILTER LENGTIH =6

:'::* .IMPULSE RESPONSE * .

He 1) = -,.355:31050E-06 = HC 63)
H 2) = .23697640E-03 = H(62)

H(3) = .I.197250E=0 = H 61)

H(4.) -. 618S67540E- = HT 60)
HC 5) = - .- 20625860E-0 = Ho 50

H(6) = .62498I40E-,' = H(58,'
H 7) = .1048109)E-05 = He 5

,:I = .664004C0E-07 = H 51)
H(9) = .278372E- = H(55)

H(0) = -. 35488550E-02 = H(54''
H11' = -. 793946SOE-05 = Hy 53."

H 1) = .6,5240E-0,2 = Hf 57)
H(3) = .10006150E04 = H 5.,

H(14) = -.53602550E0 = '- 50.
H (15) = "-45' 0 9'1SE-05 = H 4%

H(16) = - .3099540E-02 = H(48
H(17) = -. 22562560E-05 = H ' 7
H(18) = IS017490E-02 = H 6)

H(19) = .210 7 64S0E-04 = H? 45)
14(20) = .. C-20170E-0i = H' 44'
H(21) = -. 2.35912i0E-()4 = H(4.')
H(22) = .26872950E-01 = H(42)
H(2') = .1 0135640E-04 = H(41)

H (24) = 668505.0E-02 = H(40)f

H(25) = .13716950E-04 = H 39)
H(26) = -.709'5640E-0 1 = ,, -8)

- 027 : = .3':: 20,OE-0, = -- 37
H(28)', = MO, OSM- OE400,c-'...- = Hi "=...

H(29? = .34467460E-04 = .- ,

H.(.33) = - .15 ' . ..3 "t8720.'E+50 - H 74

H(3. = , -I4526260E-'H - 77i

H(32) = .24148710E+'O" = H' 7-

BAND I BAND 2 BAND 7
LOWER BAND EDGE .,00000 .230000000
UPPER BAND EDGE .150000000 .27000000 .500000)
DESIRED VALUE .000000000 1.000' 0", '
WEIGHTING 1. 0,0.:' 00C00 1. 000
DEI. A AT I ON ,..00 60967 .)0'0.,0 "6" ..,-
DEVIATION IN DB -84. 297P5:::'000 -84."P,500.n -.. . C-...

EYXRFMA FREQUENCIES

,0761719 .0908203 1044922 3 T1 . '

.14)625) .14746)9 . 15 .2,0" " _ 2= 75-

.2397-56 .2495313 ."2075 ;':"i 7or:

.3,500000 "2?2q7 .3.5"7656 6rT 17
.. 942 29 .4 " ,' 4">4095707..42421@7 r *"-

.4691406 . 4V4-& 56 .,0'

122

Table C12 Filter Coefficients for BPF2500 L9

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORITHM

BANDPASS FILTER

FILTER LENGTH - 9

5* IMPULSE RESPONSE 555$*
H(1) - .59850840E-01 a H(9)
H(2) - .83494020E-08 - H(8)
H(3) - -.29925420E+00 - H(7)
H(4) - .14653130E-07 - H(6)
H(5) - .38029830E+00 - H(5)

BAND 1 BAND 2 BAND 3
LOWER BAND EDGE .000000000 .200000000 .400000000
UPPER BAND EDGE .100000000 .300000000 .500000000
DESIRED VALUE .000000000 1.000000000 .000000000
WEIGHTING 1.000000000 1 .000000000 1.000000000
DEVIATION .098508380 .098508380 .098508380
DEVIATION IN DB -20.130510000 -20.13051000L -20.130510000

EXTREMA FREQUENCIES
.0000000 .1000000 .2000000 .2500000 .3000000
.4000000

2:

p'
%"s

p°

123

Table C13 Filter Coefficients for BPF2500 L15

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORITHM

BANDPASS FILTER

FILTER LENGTH - 15

$ $ IMPULSE RESPONSE $$$*
H(1) - .57887090E-08 - H(15)
H(2) - .38867450E-01 - H(14)
H(3) - -.68377540E-08 - H(13)
H(4) - .71470100E-01 - H(12)
H(5) - -. 14981210E-07 - H(11)
H(6) - -.28886740E+00 - H(10)
H(7) - -.43811290E-08 - H(9)
H(8) - .41073510E+00 - H(8)

BAND 1 BAND 2 BAND 3
LOWER BAND EDGE .000000000 .200000000 .400000000
UPPER BAND EDGE .100000000 .300000000 .500000000

DESIRED VALUE .000000000 1.000000000 .000000000
WEIGHTING 1.000000000 1.000000000 1.000000000
DEVIATION .053675240 .053675240 .053675240
DEVIATION IN DB -25.404490000 -25.404490000 -25.404490000

EXTREMA FREQUENCIES
.0000000 .0666667 .1000000 .2000000 .2500000

.3000000 .4000000 .4333333 .5000000

,1.

124

Table C14 -Filter Coefficients for BPF2500 L31

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORITHM

BANDPASS FILTER

FILTER LENGTH = 31

***'* IMPULSE RESPONSE ***
H (1) = -. 42183190E-05 = H1 71)
H(2) = -. 36066390E-02 = H(:0)
H(3) = .22711920E-05 = H(29)
H(4) .1444820E-C)I = H(28)
H(5) = .53756610E-05 = H(27)
H(6) = .21266940E-02 = H(26)
H(7) = -. 66096860E-05 = H(25)
H(8) = -. 426993.50E-01 = H(24)
H(9) = .69611760E-06 = H(2Z.)
H(i. 0) = .426551.CE-01 = -H (22)
H(11) = .4223751(-)E-(:)5 = H(21)
H (12) = .84109580E-01 = H(2))
H(13) = -. 2967660CE-)5 = H(19)
H(14) = -. 2911775)E+C(' = H(18)
H (15 = .12" 135(-)(:)E-)5 = H(1"7)
H(i - .?6 1 096oE+00 = H(1.6)

CBAID 1 BAND 2 BND 7
LOWER BAND EDGE . '.().) ()',)" ;().)'() 0 C 4 ('(])'(,-:0',''
U P P'F E R EB AH N D E D G E .1 (O (:) C) C :C(-. () 0 ' 0) ' C ". () () ' () -C ()

DES I RED VALUE . O()(C)0C) 1.0()) ()0 C() . U.)-) ()

WE I GHT I NG 1 . 0:]000C(...0C)0C. 10.)()o(')C)(:)C)o) 1 C). C)C()Q)
DEVIATION .1615104 .018 15 1. 04 . a 18i51 1t
DEVIATION IN DB -54.821 910000 -54. 82191 00) -54. 82191 000C)

EXTREMA FREQUENCIES
0C)t')(:)0) . 0390625 . 07073125 . C)91 P7 . M O'.,

S20('CC .20-78125 . 225..9 6 . 5C 1- 27 421 ,
1 29 1 69 . : C)' . 4000000 . 0A078125 .471 25:i:,

4625(.000 .5 C0)()(.)(0 .

l,,f '

ft%

125

Table C15 Filter Coefficients for HPF2500 L312

FINITE IMPULSE RESPONSE (FIR)

LINEAR PHASE DIGITAL FILTER DESIGN

REMEZ EXCHANGE ALGORITHM

ENDF .SS FILTER

FILTER LENGTH = .

: *:*'* 1 IMPULSE ,ES,..,F,- SE * , 1 * .

H I .21Z428C)E-C2 = H(31-

H ,'-'- " 2', J E " 22H(4' = - l.,-, ¢,' . -. = H

H', 4;, = . 73(,33790E-06 = H(23)
H(5 .9421.' ,,/0E-,.- = H)

Hk 6) = -. 28609320E-05 = H' 26)

H(7) = -. 17204:.90E-01 = H(25)

H(8) - 2c2l-.45c)E--5 = H(24)

H' 9 = .29778450E-1)i = H(-
H(10) = -51459510E-05 = H" 2

H(11) = -. 51521800E-01 = H(21)

H(12) = .41184310E-05 = H(20)
H(1.) =, .98416Z7C'E-01 = H". 19' 1"
H(14) -. 47544730E-05 = H(I) 1
H(15) = -.. 1567870E+ 00 = H ITh

H i 16= .50C)C:14:E+H0 = H, L.

BAND 1 R.4D 2 ,-

LOWER BAND EDGE . C....00000 C00)f - - '

UPPER BA4'D EDGE . 200(00C:'000 .50000Co0'

DES I RED VALUE .0000000 C) 1. t000 00000

WE I GHT ING 10. 00000C)00C 10. .) 0 00 0 0C 0,

DEVI ATION .0)01349337 ,00 .3 7977.7

DEVIATION IN DB -57. 7975'000 -57. 53975-.000

EXTREMA FREQUENCIES
u3125C .0625000)Q .0917 , '9 1- 4. 7., ..4-,47

.17:328 .1933594 .20o:n00 . 0 ..0C... .. 073.,:

* :.25:90 .350781 ."7, .3712250 .407421 ..

.4699219 . 5000000

1.

W:,..w, ,,,.

,I.. ,,, , ,

126

Table C16 : Filter Coefficients for HPF3500 L9

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORITHM

BANDPASS FILTER

FILTER LENGTH = 9

**** IMPULSE RESPONSE **.:,
H, i) = -. 477-@52 50E-E = H. 9)
H(2) = -. 510Q631. iE-1 = H(8)
H Z) 15:c)25E+ ()') = Hk 7)
H(4) = 25925620E.-0 = H(6)
H(5 = .wC',4"6c6CE+.(') = H 5

BAND 1 BAND '2
LOWER BAND EDGE . 00000(0001(.400000(0' 0
UPPER BAND EDGE 3-. -S)0'0')(u) .5000''00
DES I RED VALUE .1. 0)0C)OOC.:0
WEIGHTING 1. 30C0)00CC1) 1. 00C)O000000
DEVIATION . 104961000 . 136449700"
DEV'IATION IN DB - 19.5 79420()- .'(17.3('C056-U0

EXTREMA FREQUENCIES

~*~j()(j4j 141, *1 *4 IF,'~ 4,1 * --- t,

***** **:*** ** : * . * * * : *.,. ***., ** *** **> , : ; *, , :, *,. 4:i,# .

;5%

I!
-N'

127

Table C17 Filter Coefficients for HPF3500 L15

FINITE IMPULSE RESPONSE (FIr4
LINEAR PHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORITHM

BANDF'ASS FILTER

FIL TE .. NOTH = 15

. .*.,* * IMFULSE RESPONSE *.* * *
H. 1 = -. I._2834810E -., I-fl !5

H - . .227233-7E -: I
H = .44 7 4240E H :.

H.4) -. . . 00E- 1 (1 2
-1 = -2 70 88E-01 - H " .1

= -.-.', -.-,38.E+o..0 = H(. T:

H) 12) 2. . 9 "..U2 E + H,' 8

BAND 1 BAND .2
LOWER B A ND EDGE ..)0.)C00 .40000(x' -
UPPER BAND EDGE .3,0000(C) .500000C)0.O

DES I RED VALUE .00:000000 1 00000000C0
WE I GHT I NG 1 . 00000I000 1 .0'C)00000C.)

DEVIATION . 0:6427. 10 .036427:1 0
DEVIATION 1N DB -28. 771430000 -28.771430000

EYTREMA FREDUENCI EIS

.3 ~ C 01 C)'):. .0 ::00(.1 !250.C: .5C00C00K
44 1 i,. 4- Ir H . . 140,.Ztk ..

:$:)) .:,, -. : : .. . : , . ;. : : :) .. : < : . ::,, : r ,.., ,. ;.. , , .,,...... 5... P

~ Vj* *j ,. __

128

Table C18 Filter Coefficients for HPF3500 L31

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORITHM

BANDFASS FILTER

FILTER LENGTH 1

* .,.' IMPULSE RES,- N4SE *.*::
H(I = -. 18c9682,4 E-. = H '
H 4 Z 1 '.'2C 3-'- :(-)-, E .. - H , 7-.0

H.) 7 i.44)7050E-C,2 = H 9'-
H(4, = - -...... H'. . " 8 :H .' 4 ,, 6- ,J..5:-E-,.."= H C

H(5) 6 .6742.9..E- = H 2
H(6, = 4516920E-0- = H(26
H(7) = 1T5C7420E-01 = H(25
H(8) = .1477700E-0! = H(24)
H(' = .476759E-02 = H .
H(10) = - 22502630E-01 = H 22
H(11) = .51378460E-01 = H(21)
H(12) = -. 41218850E-01 = H(20)
H(17) = -.2878980E-01 = H, 19'
H(14) = .14615710E+(0 = H(18)
H'5 2r3= -. 25651.00E+00 = Hi 17'.
H % . ;.:-5 6 OE-'.:.O = i (lO.

BAND 1 BAND 2.
LOWER EAND EDGE . 0K-C'
UPPER BAND EDGE .301000C • 5 0(-00 0

DESIRED '.,ALUE . 000000000- 0000000 . II
WE I GHT I Nc I .Ecu::0 O 1 0. 000:)000
DEVI 1 T ION . 0 15 22, 1 1 Q . 1522 1
DEVI ATION IN DB -5. 5;7-00 -5&..730

EXTREMA FREDUENCIES
* C) 0 Oz1250.0:)- C)644571 .0 57,::,,,1 . 129,'15

15 82031 .18945'1 .27 10'- 7..4....... C) 104.4 C2" 4
. L b as .0. 4 "': r' (' ':)(" 40 7 21215 . 42-

.45664:)6 .5.)'00C

,,...

129

Table C19 Filter Coefficients for HPF3500 L63

PN ITE IMPIULSE RESP~ONSE (FT F,
LINEAR PHASE DIGITAL FILTER DESION
REMEZ EXCHANGE ALRITU,

.,NDP- FILTER

FIL P LENGTH =6

1 MPUL3E RESP'ONSE~
Ht 1) = .11472290E-04 = H' 63)
Ht 2) -..W,77OOE 5 = H' 6$2)
H 7) = -. 40098000E-04. = H(61.

H(4) = .94604C.0E-.04 = Hf 60'"
H 5) = -., 6 02'OE-04 = H -(5'
Hc ,6-) = -. 17588..-, OE-07' = H(5=')

H(7 = - S4 68,,:E-.v = - "-.'
H?8 = -. 3 51'80E-07 H . . '
H ' - ..528440- 07 ". 50-
H.- :t0) = , l1:48.3'8SOE-02 : Hf 5,0:-

- -- 7540'E-02.. H(5,.-

H112) = ,625180S,:E-0 = H(52)
H4 1 . = .21 '"E - 2 - H(5)
-, .4 = -.33322 4,:0E-02 = H 5(0)

H 1 5 = .14 7 24 6 0 E - 02 = f M-?
H (16 = .322022E-07 Hf 4M
H(17) = -..930E-02 ..H(47)

MIS)= .2934Se(E-C,2 =H(46)
H (19) = , :t 4,. E-,.. = H(4
H . = V...1OE-0 H (4A....) - '31' -O..iOE-0.. -. 4)

H 21) = -.7172930E-ul = H 47)

H(22)' = ,521859480E-02 = H(42)
H(23) = 3.194887OE-012 = H 41)
H(24)".:'" = -.2I8- :..'4.:010E-0 I = H(40'l
H.-(25): = -. 1133360E-01~ = H(30')
H(26)5 T~3 -)-'. . = -....'. E-1 H 43)

H(27 ,. .691,260E-0:1 = I 3 ,

H0S- = -. 3720- = H(76.
H ' , = . ,81-'.''10E-0 -" 0

Hi25) = -, I143560E-01 = H(7Y

H I M = .14 84 98 0E -0 -H 74).... .), = -. 4565 20ME0E-0: = H-l 3Z,

H02,)3::" .. = , .40 472020E+00: = H(""'.,-.-
-"

LEBAND 1 BAND 2
LOWER B AN D c.:,~:.000 0C.0000 .400000000Oq:
I.J F[BAND EDGE .30 ":0t0-0":0' .5(,:0000000

LIDEIE AU .00'x0000000 1..000000000

WE I GHT I NG 1.000000000 1. 000)C) i10010,

DEV IAT I ON .00000804q .0)0002049
DEVI AT ION I N DE - 1 01884900000 - I: 1.8849'00)

EYTREMA FREMUENCIES
.O000000 O .0 I56250 .02 1.250C' , 0468750' ,.'+."" ' '- ' _.,"

1.o25, ...' 17 18750 .1....7 .22"S "

.231 44.5.7 .251" .258789' .2164 322

291& 922 . 297 J6 ,.000000 ,40'0''n .. ' -.
-.417 A9 69 .44 2Z..4 r' " p

"". .48..... .5000000'

a% ' ,e -.q .le

I .

APPENDIX D

PROGRAM LISTINGS

-i

FILE: MAKEDATA FULL Al FTD COMPUTING FACILITY

1

program MAKEDATAJFILE 3

(a This program allows the user to make a data file that contains)
a signal with many different characteristics possible or some *

C' combination of characteristics. These possibilities are listed *
(* in the first part of the main program and include various time *
C' waveforms and two different noise distributions. The program is *
C' designed to give the user maximum flexibility in selecting the a
(~desired signal characteristics. 4

program MAKEDATAFILE(INPUT.OUTPUT);

const

PI a 3.1415926535898;
MAX NUN SAMPLES a 16384;

var

CHI CHAR;
DATE.
TIME :ALFA;
DATA-SAMPLES :TEXT;
SEED 1.
SEED2.
ANS.

j INTEGER;
A.
U.
R,
0.
X.
DUMMY NUM,
INITIALVAL,
SIGMASO.
LEVEL.
PROSIMP.
IMPULSEVALUE.
STEPOFFSET,
NOISE-AMPLITUDE :REAL;
FILECHOICE.
F REQ.
CHOICE.0
STARTFRED.
STOPFREQ.
STARTSAMP.
STOPSAMP.
NUMSAMP.
NUMSTEPS.
SIGN INTEGER;
DONE :BOOLEAN;
SIGNAL : array(.I..MAX-NUM-SAMPLES.) of REAL;

%INCLUDE CMS

(a--) .f

C' function SON

(a This function returns the sign of the TEST..VALUE.

(a--)

function SON (TESTVALUE : REAL):INTEGER;

beg in

SON:';

Np.'

FILE: MAKEDATA FULL Al FTD COMPUTING FACILITY 132

if TEST VALUE < 0 then
SON 7. -1;

end;

beg in of MAKEDATA-FILE

tormin(INPUT);
termout(OUTPUT);
CUS('CLRSCRN',I);
wrltaln('Would you like to 1) add to the existing signal,);N
writeln(' 2) add to the ideal signal');
writaln(' or else) make a now *;gnal 1;
readln(ANS);
if (ANS a 1) or (ANS - 2) then
begin

case ANS of
I reeet(DATA-SAMPLES. 'name.SIGNAL.POATA.*');
2 :rest(DATASAMPLES. 'nameuIOEAL.POATA.*');

and;
readi n(DATA-SAMPLES. I DUMMY NUN);N
While not(sof(DATASAMPLES)) do%

readln(DATASAMPLES.I.SXGNAL(.1.));
NUNSAMP :a 1;
writeln('There are'.NUMSAMP:6.' samples Of data');

ncd
Ils*

repeat
writeln('How many samples to take (1024 recommended)?');
readln(NUMSAMP);
If (NUMSAMP > MAXNUN SAMPLES) or (NUMSAMP < 1) then

writoln('The number of samples must be between I and 4096');
until (NUMSAMP >0) and (NUMSAMP <= MAXNUMSAMPLES);
datetime(DATE.TIME); (* generate random seed for *
readstr(str(TIME).1:2.CH.SEEO1:2.CH.SEEO2); (~random number
I :* SEEOI*SEED2+I+SEEOI+SEEO2; (*generator
U :urandom(I);

wrftln(I.U);writeln;
writoln('BUILD A SIGNAL');

repeat

writaln('What would you like in It?');
wrfteln(' 1) Constant level');
writeln(' 2) Monotone ramps');
writeln(' 3) Sinusoids');
writaln(' 4) Steps');
writeln(' 5) Gaussian noise');

wrtt~ln(' 6) Laplacian noise');
writ@ln(' 7) IIR filter the signal');
writaln(' 6) That''s all');
readln(CHOICE);
case CHOICE of

I :begin
writaln('What shall the constant level be?');
readln(LEVEL);
if LEVEL <:, 0 then

for I :a I to NUMSAMP do
SIGNAL(.I.) :a LEVEL;
end;

2 : begin
writoln('What is the starting sample for the ramp?');
readi1n(START..SAMP);
writalm(lAnd the ending sample?');
read 1n(STOPSAMP);
writeln('TO what relative value should the ramp rise(fall)?');
readl n(LEVEL);
INITIALVAL :n SIGNAL(.STARTSAMP.);
for I :a START-SAMP to STOP-SAMP do

SIGNAL(.I.) :*INITIALVAL + LEVEL/abs(STOPSAMP-START-SAMP)*

* '~* n~... ~ ~~ 3 %~ ~ - - ' %% %I~.'

FILE: MAKEDATA FULL Ai FTO COMPUTING FACILITY13

(I-STARTSAMP);
end:

3 :begin
writeln('Input frequency of sinusiod in 14z(0 If group desired)');
readln(FREQ);
if FREO <> 0 then
beg in

writoln('starting sample(0 if all samples)?');
readlIn(START-SAMP);
If START-SAMP *0 then
beg in

START-SAMP 1~ ;
STOPSAMP :~NUNSAMP;

and

begin
writeln('ending sample?,);
readi n(STOP-SAMP);

and;
for I :a START-SAMP to STOP-SAMP do

SIGNAL(.I.) :a SIGNAL(.I.) + sin(2*PIOFREQ*I/NUMSAMP);
end
else
beg in

writeln(lWhat is the starting frequency?');
readin(START..FREQ);
wrlteln('What is the last frequency?,);
readln(STOP-FREO); W4

f or FREQ :a START-FREO to STOP-PREQ do
for I :a I to NUMSAMP do

SIGNAL(.I.) := SIGNAL(.I.) + sin(2"PI"FREO*I/NUJMSAMP);
end..

end;

4 : begin
writeln('How many steps in the signal?');
roadln(NUMSTEPS);
for) :w I to NUMSTEPS do

beg in
writeln('input the starting sample for step' .j);
readi n(START-SAMP);
writeln('And the last sample?,):
read n(STOP..SAMP);
writeln('And the offset?');
readl1n(STEP-OFFSET):
for I :a START-SAMP to STOP-SAMP do

en;SIGNAL(.I.) :w SIGNAL(.I.) +STEP..OFFSET;

end;

5 begin
writeln('What shall the noise sigma squared be (gaussian dist.)?);
writeln('Sigma squared?');
readln(SIGMA_.SQ);
for I :a Ito NUMSAMP do

beg in
U :s ran o(0);
R :a sqrt(-2.0* SIGMASQ * ln(U)):
U :a re -no(0) -
0 :a 2.0 * PI 0 U;
X :s R 0 cos(O);
SIGNAL(.I.) :a SIONAL(.I.) + X

edend;

6 : begin
writeln('what shall the probability of am impulse be?'):
readin(PUOSIMP);
if PROSIMP , 0 then
beg in
writeln(Do@ you want 1) all positive impulses or 2) both negative'.

L OF'*#N-

FILE: MAKEDATA FULL Al FTD COMPUTING FACILITY

134
and positive Impulses.,);

roadln(SIGN);
if SION *2 then

SIGN :*-i;
writaln('What shall the Impulse standard deviation be?');
readi n(IMPULSEVALUE);
for tJ :& I to NUMSAMP do

beg in
U :a random(0);
If U <a PROBIMP then
beg in

U :a random(O);
X :* -(IMPULSE VALUE/sqrt(2))Sln(1-U);
SIGNAL(..J.) :- SIGNAL(.J.) + X * SGN(random(0) +4.l

(0.5 * SIGN))
end;

end;
end;

end;

7 : begin
writeln('What Is the parameter ALPHA?');
roadiln(A);
for I :a NUNSAMP downto 2 do

end;

DONE :*true;

OTHERWISE (do nothing a
writaln('That is not an option');

end; of case statement

CMS('CLRSCRN' *I);

until DONE;

writaln('ls this an 1) ideal signal or a 2) signal to be filtered?');
riiadln(FILE CHOICE);
if FILE CHOICE - I then

rewriTte(DATA-SAMPLES. 'nameuIDEAL.PDATA.*')
also

rewrito(DATA-SAMPLES. 'name'SIGNAL.PDATA.*');
(writeln(DATASAMPLES.0.NUMSAMP/1000.0:15:8);)
for I :a I to NUNSAMP do

writeln(DATA-SAMPLES.I:4 ,SIGNAL(.I.): 15 :8);

end; (* of MAKEDATA FILE .

, b1

FILE: FREQ PASCAL Al FTD COMPUTING FACILITY 135

(" ")
program FREQ 5)

(e This program takes the discrete Fourier transform (DFT) of a
(s signal. The signal may be up to 16384 elements long, but that *)
(o length is not recommended due to the length of time to *)
(s calculate. The OFT Is implemented using a decimation-in-
(* frequency FFT algorithm. 5)

program FREQ (INPUT.OUTPUT); .,

%INCLUDE CMS

const

PI n 3.1415926535898;
MAXARRAY SIZE - 16384;

var .9

CHOICE.
DUMMY.

M.
N.
L.
NV2.
NMI,
IP.
LE.
K : INTEGER;
LARGEST.
TEST.
LEI.
UR,
U1.

WR.
W1,

TA,
TW.

TNI REAL;
MAG.
PHASE.
XR.
Xi : array(.1..MAXARRAY_SIZE.) of REAL;
FILEA : TEXT;

(S--S

function RAISE(S -) ..

(S This function raises A to an Integer power N This function is *)
(. not intrinsically available in the Pascal compiler.

(S-- .0

function RAISE (A.N INTEGER) INTEGER;

var

TEmP.
I : INTEGER;

begin

TEMP a 1;
for I 1 to Nd #do

TEMP * TEMP * A;

W , r e

vaM~rTTME

www- 301MWRWW~ WU W PV pvuv~mjW7lW MJY- IJ pNJ-iV~v%, WWIFW1WV W-VV 7W~ wi -JWp~ J

FILE: FRIG PASCAL Al PTO COMPUTING FACILITY 136

RAISE :a TEMP;

end;

--)

function LOG 0)

(. This function implements the base 10 logarithm of X. The Pascal *)
(- cOmpilor only gives an Intrinsic natural logarithm. The base 10 -)
(~logartthm to calculated by 0)

log x In x

In 10
(- .)

(--

function LOG (X ; REAL) : REAL;

beg in

If X * 0.0 then
X :0 0.00000001;

LOG :8 ln(x)/tn(IO.O);

ent;

begin (= of FR)

terin(INPUT);
totesut (OUTPUT);
CUS('CLRSCMU .1):
wrltOln('Of which file are we taking the OFT,);
writeln(' 1) IDEAL')-
writeln(2) SIGNAL'); %
writeln(' 3) GRAPH');
vriteln(4) xx');
readn(CHO[CE); 5%

N :0 0;
if CHOICE 4o 3 then
begin

case CHOICE of
I reeet(PILEA.'nMame.IDEAL.POATA.O');
2 rOet(FtLEA.'nemesSIGONL.POATA.*');
O re0et(FILEA.'nsmeeIxx.POATA i'); ',

end;
if CHOICE 4o 4 then

rea4ln(ILIA,. OULEY(.); (eXa(l)-oummy read file size*)
rept (6 reed in data to PPT F)

N a N6 + 1;
P61n(FXLEADIUMv. R(N I);
xI(N I • 0;

until eOf(FILEA);
ene
else

reOet(rILAn. oGEAilPm POATA '.

IN * N *
rO0dIM(FI1EA.ODUWM'.xI(N).X*(N)) (* KI(N) is G Ommy read*)

u6tll eef(PILlA).l

0 * . (0 celculete N)-
TEST * N,

TEST • YES5/2.

' d'*' •/ oi•d. V. o',' .. .,. o. . ,>. - -. , I

FILE: FREO PASCAL Al FTD COMPUTING FACILITY 4.
137

until TEST <a 1;
if TEST < I then

for I :a N+1 to RAISE(2.M) do (length /320*M. pad with 0 *
WR.I.) :a 0.0;

N :8 RAISE(2M);
writaln(n);

for L :*I to M do (.calculate FFT
beg in

LE :* AISE(2.*+1-L);
LEI :LE / 2.0;
UR :*1;
U! 0;
WA : cos(PI/LEI);
WI :*-sin(PI/LEI);
for .J :9 1 to round(LEt) do
beg in

for K :m round((J-l)/LE) to round(N/LE) do
beg in

I :8 K*LE + *
if I <= N then
beg in

IP aI + round(LEI);
TA : XA(.1.) + XA(.IP.);.

TMR :-XR(.1.) -XR(.IP.);

XA(.IP.) :*TMAOUR TMI*UI;
XI(.IP.) :TMA*UI *TMI*UA;
WA.I.) :*TR;
XI(.I.) :*TI;

end;
end; (m NEXT K *
TA : UAOWA UIOWI;
U! : UAOW! UIOWR;
UR :*TR;

end; (SNEXT ml
end; (0 NEXT L *)
NV2 :*N div 2;
NMI *N-1;
UJ:I
for I :*I to NMI do
beg in

$f I < J. then
begin

TA A(I)
WA.I.) :*XR(.mJ.);

TI := XI(.1.);.
WI.I.) WeI.J.);
XI.,J.) :*TI;

end;
K :a NV2;
while K < J do
begin

J :0 m-K;
K :4 K div 2;

end;
Jl : J+K;

and; (0 NEXT 1 a)

for I :a I to N do (~caic meg &phase of DFT a
begin

MAG(.I.) :a sqrt(sqr(XAC.I.)) + vqr(XI(.j.)));
PHASE(.I.) :0 0.0;
If WR.I.) -9> 0.0 then

PHASE(.1.) :m arctan(X1(.1.)/XA(.I.)) * 180 /PI;
if X(.I.) -c 0.0 then

if WI.I.) > 0.0 then l

PHASE(.I.) :*180 + PI4ASE(.I.)
end;

% ~~~~ ~ ~ ~ ~ . Z ~ w. .~%~

FILE: FREQ PASCAL Al FTD COMPUTING FACILITY13

writaln(,Would you like the output in LOG magnitude (1-yes.0-no)?');
readoln(CHOZCE);
If CHOICE w I then

beg in
LARGEST a6 0.0;
f or I :~ I to N CIO

LARGEST :a max(MAG(.1.).LARGEST);
for I :m I to N do

MAG(.1.) :a 200log(MAG(.I.)/LARGEST);
end;

writaln('Is this 1) an X(w)'):
writln(' 2) a Y(w)i);
writaln(' or eleo) a regular freq output'); I

readin(CHOICE);
case CHOI1CE of

I : rewrfte(FILEA.'nameuFREOX.PDATA.O');
2 : rlte(FILEA.'name*FREOY.POATA."');
otherwie

rewrlte(FILEA. 'nameuFREQ.POATA.0');
and;
for I :w I to min(N. 1024) do

end. of FREO

J.

01

Lh

r
FILE: FILTER FULL Al FTD COMPUTING FACILITY13

09I

(a program FILTER a)

(a Author: Doug Rider a)
Date : 10 July 86 a)

Purpose : This program was designed to implement a generalizede)
(a digital filter according to the following sche"e.

(a Once a window size has been chosen the user is asked to a)

supply the requested weighting values or choose a a)
predefined set for either the time or rank weights.)

(a time ordered a----------------- -)
(a input --> I I I ... I I)

(t 1' 1'... 1'• ;
(a A(I)-O -0 -0.. .A(n)-O a)
(a t t t t a)',

(a I SORT I

(1 1 t. . a)

(a 6(1)-O -o -0... B(n)-O a)
(a t t . t a)

(a I * **~ I output a)

(a The program then opens the external data a)

(- file where the values of the sampled a)
(a signal to be filtered are and initializes the window. a)

(Initializing consists of filling the first half of thea)
(a window with the first data value and then reading in a)

subsequent values until the window is fifled. Next a)
(a the window is weighted by the W() set of coefficients.0)
(0 The window Is then rank ordered. After this the a)
(0 second set of coefficients are applied which trim off *)
(0 the smallest and largest values of the data. 0)
(a After this last trimming the remaining samples are a)
(0 sumed and gain adjusted. Finally, the a)
(a window is stopped over one value in time by deleting a)
(a the oldest value and inserting the new value in the *)

(0 proper rank order. The filtering and stepping a)
(a continue until the end of the data file is reached. a)

program FILTER (INPUT.OUTPUT);

%INCLUDE CMS

const

MAX WINOOW_SIZE a 64;

type

DATAELEMENTPOINTER a @DATA ELEMENT;
DATA ELEMENT a record

ACTUAL VALUE : REAL;
MODIFIED VAL : REAL;
NEXT-LARGEST : DATA-ELEMENT POINTER;
NEXTINTIME : DATAELEMENTPOINTER

.end;
VEIGTARRAYTYPE * array(.t..MAX_WINDOW SIZE.) of REAL;

var

NEW

FILE: FILTER FULL Al FTD COMPUTING FACILITY

140
SMALLEST-VALUE.
OLDESTVALUE : DATA ELEMENT POINTER;
DATAFILESIZE.
I.
WINDOW SIZE : INTEGER;
DUMMY.
CODED-FILE SIZE.
FILTER INPUT.
FILTER OUTPUT REAL;
GRAPH-FILE.
DATASAMPLES : TEXT;
END.. OF OATA : BOOLEAN;
TIME-WEIGHT ARRAY.
RANK WEIGHT ARRAY : WEIGHTARRAYTYPE;

(°a:..om...ms.moa*omsS..iosm*.*a.sS*S*a~sme*Som~s****e*Soos.*s)

procedure GET PARAMETERS a)

(. This procedure returns the user input parameters that will be ")
used during the program run. a)

(a o) p.

procedure GETPARAMETERS (var WINDOW SIZE : INTEGER;
var TIMEWEIGHT-ARRAY : WEIGHT ARRAYTYPE;
var RANK WEIGHTARRAY : WEIGHT ARRAYTYPE);

var 1

DC.
ANS.
CHOICE.
I : INTEGER;
CHECK.
VALIDOSIZE BOOLEAN;
GAIN.
DUMMY : REAL;
COEFFFILE : TEXT;

a

(--*)

(a 8procedure MANUALINPUT *)

(a This procedure lets the user input the weighting U)

coefficients to De used. a)

(--)

procedure MANUALINPUT(var INPUTARRAY WEIGHT ARRAY TYPE;
WINDOWSIZE INTEGER);

var

ANS INTEGER;

begin

writeln('Input the desired filter coefficients,');
for I :a I to round(WINDOWSIZE/2) Do
beg in

rtoln('A('.I:2.') 7');

reedlrm(INPUTARRAY(.I.));

writeln(I'e te filter symmetric (1-yes.O-no)7');
reedln(ANS);
for I :0 round(WINDOW_SIZI/2)1 to WINDOW-SIZE do

if AN$ I then

FILE: FILTER FULL Al FTD COMPUTING FACILITY
141

INPUT ARRAY(.I.) :sINPUTARRAY(.WINOOWSIZE - I + I.)
else
begin

writoln('A('.:2.') ?');
readln(INPUT ARRAY(.1.));

end;

end;

--(• •

procedure DOALPHATRIM

This procedure calculates the number of elements to be
trimmed off of each end of the rank weight array and O's them. *)

--)

procedure DO ALPHATRIM (var RANKWEIGHT ARRAY : WEIGHT ARRAY TYPE:
WIZNDOW-SIZE : INTEGER);

vet

1.
NU"_TR IMED.

TRIM.
NUM LEFT : INTEGER;

begin

vriteln('Input how many elements to trim (must be even 1))');
readl n(NUMTRIMMED);
TRIM :a NUMTRIMMED dav 2;
NUMLEFT :a WINDOWSIZE - NUMTR4MMED;
for I :a I to TRIM do

RANK WlEIGHT ARRAY(.I.) :- 0;
for I :a TRIM#1 to TRIM+NUM LEFT do

RANKWEIGHT ARRAY(.I.) :; 1;
for I :0 TRIM.NUM LEFT+1 to WINDOWSIZE do

RANK WEIGHT ARRAY(.I.) := 0;

end;
no1

--)

(a procedure CALCULATE

(This procedure calculates the gain factor for the filter)
coefficients so that the output is properly scaled.

------------------------------- t------------------)

procedure CALCULATE (var GAIN : REAL;
WINDOW_ SIZE : INTEGER;
TZME_WEIGHTARRAY WEIGHTARRAYTYPE;
RANK WEIGHTARRAY WEZGHT ARRAY TYPE);

var

A.
I.
I INTEGER;
ORDER : WEIWH1ARRAY TYPE; (this Is the TWA ordered *)

beg in

ORDER(.1.) :6 TIME WEIGHT ARRAY(.i.);
for I :a 2 to WINOOW SIZE -o

if TIME WEIGHT ARRAY(.I.) < ORDER(.1.) then
beg in

A. f]

FILE: FILTER FULL Al FTO COMPUTING FACILITY
142

for A :a (I-1) downto I do
ORDER(.A i.) :- ORDER(.A.);

OROER(.I.) to TIMEnWEIGHTNARRAY(...);
end
also
beg in

~J to 2;
while (OROER(.qJ.) <> 0) and (TIME WEIGHT ARRAY(.I.) >

ORDER(.J.)) do
dj :* dJ 4 1;

for A :- (1-1) downto j do
ORDER(.A+I.) : ORDER(.A.);

ORDER(.J.) :a TIME WEIGHT ARRAY(.I.);
end;

GAIN : 0.0;
for I : I to WINDOWSIZE do

GAIN : GAIN + ORDER(.I.) * RANK WEIGHTARRAY(.I.);

end;

(--)

procedure SHOW

This procedure clears the screen and then provides a list
of the coefficients to the user. 9)

--)

procedure SHOW (TIMEWEIG_ARRAY : WEIGHTARRAY TYPE;

RANK WEIGHT ARRAY : WEIGHTARRAY TYPE;
WINOOW SIZE : INTEGER);

var

I : INTEGER;

begin
CMS('CLRSCRN'.I);
writeln('TIME COEFF VALUE RANK COEFF VALUE');
for I :a I to WINOOW SIZE do

writeln(' A('.I:2.') *,.TIME WEIGHTARRAY(.I.):12:S.
S 5(' .1:2.') ' ,RANKWEIGHTARRAY(.1.):12:5);

end;

(-------------------------------ft ------------------------------ ft-----------------)
(• 9)

(in procedure MODIFY

(. This procedure modifies either the Whole weight array or 9)

(9 individual coefficient values that the user desires. 9)

(--- -----------------)

procedure MODIFY (var MODIFY ARRAY : WEIGHT ARRAY-TYPE;
WINDOW SIZE : INTEGERI;

var%

I : INTEGER;
VAL : REAL;

beg in
writeln('Which element (0-> all elements)');
readln(I);
if I a 0 then
MANUAL INPUT(MOOIFYARRAY. WINDOWSIZE)

else
beg in

writeln('What is the new value');

X

FILE: FILTER FULL Al FTD COMPUTING FACILITY

143
readln(VAL);
MODIFY ARRAY(.1.) :8 VAL;

end;
end;

begin of GET-PARAMETERS *)

CMS('CLRSCRN'.1);
writeln;
writeln('This program Implements a digital filter.');
writeln;
repeat

writeln('Input the desired window size(must be an odd integer).');
writeln;
read(WINDOW._SIZE);
VALID SIZE :a true;
if noT(odd(WINDOW_ SIZE)) then

begin
wrtteln('The window size must be an odd Integer.');
VALIDSIZE := false;

end;
If (WINDOWSIZE > MAX WINDO..SIZE) or (WINDOW-SIZE < 0) then

beg in
writeln('The size must be positive but less than '.

MAXWINDOW-SIZE);
VALIDSIZE :* false;

end;
until VALIDSIZE;

writeln('Would you like to Initialize a predetermined filter');
writeln('(i.e. a mean or median filter) or manually input the');
writ.)n('fftr coefficients?');
writeln(' 1) mean filter');
writeln(' 2) median filter');
writeln(' 3) alpha-trimmed mean filter');
writeln(' 4) alpha-trimmed linear filter');
writeln(' 5) other coefficient input');
readln(CHOICE);
CMS('CLRSCRN'.I);
case CHOICE of

I : for I :s I to WINDOW.SIZE do
begin

TIME -WEIGHT ARRAY(.I.) : i/WINDOWSIZE;
RANKW-EIGHT ARRAY(.I.) :- 1:

end;
2: begin

for I :a I to WINDOW-SIZE do
begin

TIME _WEIGHT ARRAY(.I.) : 1;
RANK-WEIGHT ARRAY(..) :* 0;

end;
RANK WEIGHTARRAY(.round(WINDOWSIZE/2).) :- 1;

end;
3: begin

for I :a 1 to WINDOW-SIZE do
TIMEWEIGHTARRAY(.1.) :- 1;

O.ALPHA TRIM(RANKW-EIGHT ARRAY.WINOO SIZE);

CALCULATE(GAIN.OWIN4 SIZE.TIMEEIGHT_ARRAY.RANKWIGHTARRAY);
for I :a 1 to WINDOW-SIZE do

RANKWEIGHTARRAY(.1.) :a RANKWEIGHTARRAY(.1.)/GAIN;

end;
4: begin

CMS('CLRSCRN'.I):
wrtteln;

%*%

FILE: FILTER FULL Al FTD COMPUTING FACILITY 144

writein('Alpha-trimmed linear filter');
writeln;
writeln('Are the desired filter coefficients saved(I-yes.O-no)?7);
readlnCANS):
if ANS a I then
begin

reset(COEFFFILE. 'name.PIR.COEFF.',);
for I :s I to WINDOW-SIZE do

readln(COEFFFILE.TIMEWEIGHT-ARRAY(.1.)):
end
else
begin

CMS('CLRSCRN' *);
M4ANUAL INPUT(TIME WEIGHT-ARRAY,.WINDOWS1ZE);
writeln('Do you want to save this not (i-yes.O-no)?7);
readin(ANS);
if AN$ w I then
beg in

rewrite(COEFF_.FILE. 'nameuFIR.COEFF.*');
for I :a I to WINDOW-SIZE do

writeln(COEFF-FILE,TIME-WEIGHT-ARRAY(.1.));
end;

end;

CNS('CLESCEN'.*):
IDOALPNA-TRIM(RANKWEIGTARRAY.WINDOW SIZE);

CALCULATE(GAIN.WINOOWSIZE .TIME WEIGHT ARRAY .RANK -WEIGHT ARRAY);
writeln('The gain for this set of Coefficients is' ,GAIN:7:4);

writqln;writeln('Is this & filter that passe% dc (i-yes.O-no)?i);
#ealin(DC);
if DC a I then
begin

writeln(IThe rank weighting coefficients have been divided'):
writeln(' by the gain in order to normalize the dc level');
for I :a I to WINDOW SIZE do

RANKWEIGHT-ARRAY(.1.) :a RANKWEIGHT-ARRAY(.1.)/GAIN;
end;

end:
5: begin

writeln('Are the desired filter coefficients saved(i-yev.O-no)?');
readln(ANS);
if ANS 2 1 then
beg in

reset(COEFF..FILE. 'nameaFIR.COEFF.'').
for I :a I to WINDOW SIZE do

readln(COEFF.FILE-.TIMEW EIGHTARRAY(.1.));

e nd

beg in
CMS('CLRSCRN' .1):
writein;

writeln('Now input the '.WINDOW -SIZE:2.' weight parameters for the');
writeln('time ordered buffer.);

MANUAL INPUT(TIMA WEIGHTARRAY *WINDOWSIZE);
writeln;('Do you want to save this set (i-y*2sO-no)?');
roadln(ANS);
if ANS a I then
beginS

rewrite(COEFF-FILE.'namemFIR.COEFF.*');
for I :a I to WINDOWSIZE do

writeln(COEFF-FILE,TIMEWEIGHTARRAY(.1.));
end;

ena;

CMS('CLRSCRN' *I);%

wri teln;
writeln('Now the same thing for the rank ordered buffer,):
MANUALINPU1(RANK WEIGHTARRAY *WINDOW SIZE);

FILE: FILTER FULL Al FTD COMPUTING FACILITY 145

CALCULATE(GAIN.WINDOWSIZE .TIMEyWEIGHT-ARRAY .RANKyWEIGHTARRAY);
for I := I to WINDOW SIZE do

RANK WEIGHT ARRAYT. I.) :- RANK WEIGHTARRAY(.1.)/GAIN;

end;

end; (~ of case state men t)

writeln('Would you like to see the coefficients(l-yes.O-no)?7);
readin(l);
If I a I then
SHOW(TIMEWEIGHT ARRAY .RANK WEIGHT ARRAY.*WINDOWSIZE);

writoln('Would you like to change anythIng(1-yes.O-no)1);
readln(ANS);.
while ANS a I do
beg in

writoln('Which set of coefficients 1'>time, 2->rafl;
readin(CHOICE);
case CHOICE of

IMODIFY(TIME WEIGH4T ARRAY .WINDOW .SIZE);
2 :MOOIFY(RANK WEIGHT ARRAY .WINDOW SIZE);

end;
SHOW (TIME WEIGHTARRAY .RANK WEIGHT ARRAY .WINDOW SIZE);
writsln('Change anything elue(t-yes.O-no)?7);
readln(ANS);

and;

end; (*of GET-PARAMETERS *

(a procedure INITIALIZE 3

(a This procedure initializes the buffer window by reading the *
(a first data value and using it to fill the first half of the *

window and then filling thle rest of the window with the
(a subsequent data values read out of the data file. 8

Procedure INITIALIZE (WINDOWI SIZE :INTEGER;
var OLDEST-VALUE :DATA ELEMENTPOINTER);

ver

ELEMENT.
NEXT-ELEMENT :DATA-ELEMENT-POINTER;
DUMMY .REAL;

1.
MIDDLEOFWINDOW : INTEGER:

begin (a of INITIALIZE 3

new(ELEMENT); (3allocate dynamic variable *
OLDEST VALUE :w ELEMENT:
read(DAiTASAMPLES.OUMMY,ELEMENTC.ACTUAL VALUE); (* read 18t value *
MIDDLE-OF WINDOW :m round(WINDDW.SIZE/27; (* find middle of window a

for I :a 2 to MIDDLE-OF.WINDOW do (~fill 1st half of window *
begin

now(NEXT-ELEMENT);
ELEMENTO.NEXTINTIME :0 NEXTELEMENT; (* link data values *
ELEMENT :a NEXT-ELEMENT;
ELEMENTO. ACTUALVALUE :a OLDEST VALUEO. ACTUAL. VALUE;

and;

for I :a (MIDDLEOFyINDOW + 1) to WINDOW SIZE do (* read in data a
begin (! or last half of window *

% %1

FILE: FILTER FULL Al FTD COMPUTING FACILITY
146

new(NEXT-ELEMENT);
read(DATA..SAMPLES.DUMMY.NEXT ELEMENTO.ACTUAL VALUE);
ELEMENTO.NEXTIN TIME :a NEXT ELEMENT;
ELEMENT :a NEXTELEMENT;

end;

end; (S of INITIALIZE

procedure WEIGHT TIMEBUFFER) 4

This procedure weights each of the elements In thb time odered s)
buffer by the user input values stored in the TIME WEIGHTARRAY-)

procedure WEIGHT TIMEBUFFER (WINDOWSIZE : INTEGER;
OLDEST VALUE : DATA ELEMENT POINTER:
TIME WEIGHT ARRAY :-WEIGHT ARRAY TYPE);

var

I : INTEGER;
ELEMENT : DATAELEMENT-POINTER;

begin 1° of WEIGHT TIME BUFFER *1

ELEMENT :- OLDEST-VALUE;
for I :a I to WINDOW SIZE do hI

begin
ELEMENTO.MODIFIEDVAL :m ELEMENTO.ACTUALVALUE

TIMEWEIGHT.ARRAY(.1.);
ELEMENT :a ELEMENTO.NEXT INTIME;

and;

and; (S of WEIGHT TIME BUFFER ')

(a procedure RANK ORDER 5)

(a This procedure taxes the window that has been modified by the a)

time weights & uses an insertion sort to rank order each of thee)
elements. At the end of this procedure each element in the)

(5 window ti ordered by size of the value as well as in time. s)

Procedure RANK ORDER (WINDOW SIZE : INTEGER;
var OLDEST VALUE : DATA ELEMENT POINTER:
var SMALLEST VALUE : DATA ELEMENT POINTER);

var

ELEMENT.
NEW ELEMENT DATA ELEMENT POINTER;
I :INTEiER:

begin (" of RANKORDER e)

SMALLEST VALUE :m OLDEST VALUE; (° start with first value as)
SMALLEST VALUEV.NEXT LARGEST :a nil; (smallest and insert each *)
NEW ELEMENT :- OLDEST VALUEO.NEXTIN TIME; (* lst new valu to inarts)
for I :n 2 to WINDOW SIZE do (- loop through each value)

begin (Check if new Valu<cm&llet*)
ELEMENT :* SMALLEST-VALUE; (* value in order
if NEW ELEMENTO.MODIFIED VAL < SMALLEST VALUE#.MODIFIED VAL

then begin

o"~ • • ".°

FILE: FILTER FULL Al FTD COMPUTING FACILITY 147

NEW ELEMENTO.NEXT LARGEST :0 SMALLEST-VALUE;
SMALLESTVALUE :0 NEVELEMENT;

end
alse (else find proper order

begin
while (ELEMENTO.NEXTLARGEST - nil) and

(NEW ELEMENT.NMOOIFIEDVAL >
ELEMENTO. NEXT LARGESTW .ODF IEDVAL) do

ELEMENT :a ELEMENT.NEXTLARGEST;
(Z and insert in place

NEW- ELEMENTO.NEXTLARGEST :- ELEMENTO.NEXT-LARGEST;
ELEMENTO.NEXTLARGEST :a NEW-ELEMENT;

end:
NEW ELEMENT := NEWELEMENTO.NEXTJNTIME; (0 then go on to *)

end; (i insert next elunt in order*)

end; (of RANK-ORDER *)

procedure WEIGHTRANKBUFFER 8)

This procedure weights each of the elements in the time odered *)
(s buffer by the user input values stored in the TIMEWEIGHTARRAY-)

procedure WEIGHTRANK BUFFER (WINDOW SIZE : INTEGER;
SMALLEST-VALUE : DATAELEMENTPOINTER;
RANWEIGHT ARRAY : WEIGHT-ARRAYTYPE);

var

I : INTEGER;
ELEMENT : DATA-ELEMENT-POINTER;

begin of RANKWEIGHTBUFFER ")

ELEMENT : SMALLEST-VALUE;
for I :8 1 to WINDOW_SIZE doI

begin
ELEMENTO.MODIFIED VAL :- ELEMENT9.MODIFIED VAL *

RANKWEIGHTARRAYT. I):
ELEMENT : ELEMENTS.NEXTLARGEST;

end;

end; (0 of RANK WEIGHT BUFFER -)

l" ")

procedure FILTER

(0 This procedure finds the middle value of the time sequence, -)
(0 which is the Input to the filter, and sums the values of the *)

order sequence, the filter output, and sends the two values ')
back to the main program to be stored In a graph file. =)

(- e)

procedure FILTER (WINDOW SIZE : INTEGER;

var OLDESTVALUE : DATAELEMENTPOINTER:
va' SMALLESTVALUE : DATAELEMENTPOINTER;
var FILTER INPUT REAL:
var FILTER-OUTPUT REAL);

var

I.
MiDOLEOF WINDOW INTEGER:

U P P~ ~ ~p'.* U,''U j,~j~'."' I

FILE: FILTER FULL Ai FTD COMPUTING FACILITY 148

INPUT ELEMENT,
OUTPUT .ELEMENT : DATA ELEMENT POINTER;

begin of FILTER a)

MIDOLE_OF WINDOW :a round(WINOOWSIZE/2);
INPUTELEMENT :a OLDEST VALUE;
OUTPUTELEMENT :& SMALLESTVALUE;
FILTEROUTPUT :a 0;
for I := I to WINDOW SIZE do (* stop thru window to calc *)

begin (- output a)
If I < MIDDLEOFWINDOW then (. filter input in middle vale) -I

INPUT-ELEMENT :a INPUT ELEMENTO.NEXT IN TIME;
FILTER OUTPUT :* FILTER OUTPUT + OUTPUT ELEMENTV.MODIFIED VAL;
OUTPUT-ELEMENT :- OUTPUTELEMENTO.NEXT LARGEST;

end;
FILTER-INPUT :u INPUTELEMENTO. ACTUALVALUE;

end; (of FILTER a)

(- -) '".
(a procedure STEP-ONE a)

(- Stop the window over one data value by deleting out the oldest)
(a value from the time sequence and then creating
(a a now dynamic variable, reading in its now value, and ")
(inserting it at the end of the time sequence.)
(, waasaaaaa aaaa~aaaaaaaasaaaaaaaaaaa) P_

procedure STEP ONE (var OLDEST VALUE DATA ELEMENT POINTER;
ENDOFDATA : BOOLEAN);

var

DUMMY : REAL;
ELEMENT.
TARGET ELEMENT DATA ELEMENT POINTER;

begin (a of STEP-ONE a)

(U a a = delete Oldest value from window 0 0 a -)

TARGET ELEMENT :0 OLDESTVALUE;
OLDEST-VALUE :a OLDEST VALUEO.NEXT IN TIME: (delete from time aOq*)

dispose(TARGETELEMENT); (0 de-l locate dynamic varbl a)

(o a a a put new element into window a a a a)

new(ELEMENT); .
TARGET-ELEMENT := OLDESTVALUE; (0 start at beginning to findo)
repeat (0 the most recent value a)

TARGET-ELEMENT :& TARGET ELEMENTO.NEXT IN TIME:
until TARGET ELEMENT..NEXT IN TIME a nil;
TARGET ELEMENTe.NEXT IN TIME :0 ELEMENT; (e ado now value)
ELEMENTO.NEXT N1_TIME :e nil; (and put nil value on end a)
if not(ENDOOFDATA) then (0 if still deta values left a)

read(DATASAMPLES.DUMMY.ELEMENT..ACTUAL VALUE) (0 read now value0)
else (0 Oleo put last data val in -)

ELEMENTO.ACTUALVALUE -* TARGET ELEMENTe.ACTUALVALUE; (a buffer•)

end; (of STEP-ONE 0)

' % . F U , % %% E., '1 *% ,, *,

FILE: FILTER FULL Ai FTO COMPUTING F&CILITV

(S 149

MAIN PROGRAM

(S The main prograim first initializes the terminal for trout and)
('output and then gets the necessary parameiters to run the Prs 0)
(f rom the user. The data file is openedand filtered and the 0
('results are stared in a file to be grape later 0

(S 5)

(.ss0e0s..ee..s...sssse0s..es..se...ees...es....s....e.....s........... j

begin

terinINPUT); (*open teirminal for input 0)
tormout(OUTPJT); (.open terminal for output 0)
QET-PARAMETERS(WIIQ0WSIZE .TIMEWEIHT ARRAY .RANW1IGHTAftAY).
reset(DATA SAMPLES. neee*SIGNAL POATA. ');
feadln(DATA SAMPLES.UMY.COOEO FILE SIZE);
DATA FILE SIZE :a round(1OOO 0 COOED FILE SIZE);
rewrvte(GlAPH FILE. 'nameGRAPtl.POATA. 5')
INITIALIZE(WliNDOWSIZE .OLDEST VALUE);
ENO-OFODATA :a FALSE.
for 1 '7s i to DATA FILE SIZE do
beg in

WEIGHT ITIME BUFFER(INDOW -SIZE.OLDESTVALUE. TIME EI4MTARAY);
RANKOdROE R (WNDOWSIZE.OLDESTVALUE.SMALLEST VALUE);
WEIGHT IRANKSUFFER(WINDOWSIZE.SMALLEST VALUT.IANK WEIGTARAY).
FILTERTWINOOWSIZE .OLOESTVALUE .SMLLEST VALUE. FILTER INPUT.

FILTER-OUTPUT)
writaln(GRAPHFILE.1.1 '.FILTER IINPUT., '.FILTEROUTPUT).
if 1 3-- (DATAFILESIZE - round(WINDOWSIZE/2) *1) then

END OF DATA :w TRUE;
STEP ONE (OLDEST VALUE.*ENDOF-DATA);

end;

end.

FILE a" FULL A'PTO COMPUTING FACILITI 150

4.This P'W 6816~lee the nflOPUli~tZ 1114141 94MAO orr-or (M
(0 ame normaiiuo ver" error ("AU1 between two date fi le$ Care 0)

(9 must s taken to inoure onion~ file is the ideal 'File to be used
(a of the ref orenee for norlization This provem also goorstes '
(a two files to @pap" later One file contains bet" $tiawls that '
(a tne error wae galol~toi getwoee' OM the other file contain@

(0 the fifferenes between tne two Signet,

poeim WM I INPUT'. OUTPUT)3.

%IWCLUD1 COS
War'

MRaSANPL IS INTEGER.

IDE £LALUE. J9
ACTUAL -VALUE.

Net.
MMII REAL;

FILEA.
PILIC.
F IL £0.
PILES TEXT;

bein

toetn(INPUT);
termout (OUTPUT)3;
CMS'CLESCW'.Z);
writolni Calculate the "ME and MAE between the');
writoln(' 1) 10sa) signal andl nots corrupted sagnam)
writel(I 2) lest signal and filter- output');
writolnf' 3) filter input and output')..
writeln(' 4) iasal ana moified frequency response');
writoln(' 1) X(wJ and Y(w))j; J
rooolfl(CHICE);
case CHOICE of

reeet(FILIA. nmem*IDEAL POATA.O'):
reset(F ILES. neMOSIGNAL.POATA')

2, begin
resot(FILEA.'namesIOEAL.POATA.');
reet (F FILES. I nommuGRAPH. POATA.e

32 begin
rest(FILEA. 'iw35.SIONAL..POATA.').
reset(FILE3.,'raemGRAPM PDATA.');

end.
4 begin

reast(FILEA.'neme-IDEALRES.PDATA.*');
esset(FILES.'namo.FREO.POATA.*');

reet(FILEA. 'nemo.PREOX.POATA.*');
rost (F I L . , neoiFREQY. POATA U):J

end;
otherwise 4

writoln('That is not an option');

-Ple,*o

.WW' W" -WWUW u V W'dWW , WuVv WUW WwTM- -rw-r wW-'WYd wIJwu

FILE: MSE FULL Al PTO COMUTING FACILITY15

end;
NMI : 0;
MINORM :0;
MAE :a 0;
NANMOOM :0;
it CHOICE 4 4 then

beg in
readln(FILEA.OUMY.DUMMY 2);
NUMSAMPLES :- rounl(1000 - DUMMY2);

end.
If CHOICE a I then

readlI ILEE. DUMMY. DUY.2); %J,
rewrite(PILEC. InaumeCHANGE.PDATA.*i);%
rewrlte(PILEO. 'nameuDUALRESP.POATA.s');%

case CHOICE of
1: for I := I to NUM SAMPLES do

beg in
readln(PILEA.DUMY.,IDEAL-VALUE);
readi ln(F!LEE *DUY.ACTUAL..VALUE);
01FF :a IDEALVALUE - ACTUALVALUE;
NOOSE :s NMSE + sqr(OIPP); P
MSEMNORM NOOMSE NORM * sqr(IDEALVALUE);
MAE :a MAE *abs(DIPP);
MAE NORM :a MAENORM + abs(IOEAL-VALUE);
wriieln(FILED.DUMMY:4.IOEAL VALUE: 15:8,ACTUALVALUE: 15:8);

wrlteln(PILEC.DUMMY:4.DIF:15:5);
end;

2.(* 2 or 3 *
3: for I :a I to MUM SAMPLES do

beg in
readi n(FP1LEA.*DUMMY *IDEAL_ VALUE):
readln(PILEI.DUMMY.DUMMY_2.ACTUALVALUE);
writeln(FILED.DUMMY:4.IDEAL VALUE: IS:S.ACTUAL VALUE: 15:8);
01FF :a IDEAL-VALUE - ACTUAL.VALUE;

writln(ILEC.UMMY :4 1FF :15: 6);
NMSE :s MS + sqr(DIFP);
NMSE-NORM :a NMOSE NORM + sqr(IDEALVALUE);
MAE :a MAE + abs(DIFF);
MAENORM :a MAE NORM + abs(IDEAL VALUE);

end;
4,(* 4 or 5 *
5: begin

writeln('Are the frequency W11s in dB(1-yes.O-no');
readln(ANS);
while not(eo9(FILEA)) do
beg in

readln(FILEA.DUMMY. IOEAL-VALUE);
readln(PILES DUMMY.*ACTUALVALUE)

writeln(PILED DUMMY :4. IDEALVALUE :15 :S.ACTUALVALUE :15 :8);
if ANS a I then
begin

IDEALVALUE :a exp(IOEALVALUE~ln(10)/20.0);
ACTUAL-VALUE :a exp(ACTUAL-VALUE*ln(10)/20.0); s

end;
01FF :u IDEAL-VALUE - ACTUAL VALUE;
NMOSE :w NMSE + mqr(DIFF);
NMSE_ NORM :*NMSENORM * sqr(IOEALVALUE);
MAE := MAE *absCOIFF):
MAE INORM :a MAE NORM + abs(IDEAL-VALUE);
wrliln(FILECDMMY:4.DIFF: 15:8);

and;
end;

end;
NMSE :a NMSE / NMSEMNORM;
MAE :a MAE / NAENORM;

writaln('The normalized MSE is'.NMSE:15:S);
writaln(,The normalized average error is .NAE:15:8);

end.

nr~a tflMU.Wfl W WUWWWWWW "wowL

FILE: MEGA2 FULL Al FTD COMPUTING FACILITY 152
(aaaaaaaaaaaaaaaaiaaaaaaaaaaaaaaaaaaaaaaaaaaalaaaaaaaaaaaaaaaaaaaaaaaam)

(a program MEGAMEDIAN a)

(. This program Implements a series of procedures which will
(create a set of data. filter It and then generate the transfer *)

function for the filter. The program will loop through several *)

runs and average the results to get a better approximation
(to the transfer function if a random input to the filter is

used.

(a The program has the following filter types already a)

(- implemented: -)

(a - mean filter a)
- median filter a)

(a - alpha-trimmed mean filter (ATMF))le
(a and the new filter we are trying to characterize: the

- alpha-trimmed linear filter (ATLF) a)
(" °) h

(PROGRAM VARIABLES

SIGNAL : This array holds the values of the signal to be
(a filtered. a)

(a FFTX MAG, a)
FFTY-NAG : The magnitudes of the FFT of ihi input signal (X) *)

(a and the filter output (Y). a)

(a Tyx NAG : The transfer function of the filter obtained)
(a using the cross power spectrum a Pxy/Pxx.

TyxSUM : Array used to sum up the above variable in order o)
(a to average the result over a number of random o)

(a inputs.))

SIGNAL SIZE : The number of samples taken for each signal. *)

(a TRIALS : The number of random trials to average. ") 4.

(a I, a)
(a J : Index variables. a)

(a In this program the main procedures are set off by a single line ")
(. of asterisks. Sub-procedures are set off by a single line of *)
(a dashes. Functions or other small procedures are set off by a a)
(- line of alternating dashes and spaces. *)

(a main procedures -> aaaaaaaaaaaaaaaIaaaaa a)

(suo-proceures - ---------------- --)

(a functions or other a)
(a small procedures-> ----- ----------)

program MEGAMEDIAN (INPUT.OUTPUT);

%INCLUDE CMS

type

SIGNALTYPE a array(.-31..1056.) of REAL;
MEDIAN TYPE a array(.1..128.1..500.) of REAL;

var

SIGNAL.
FFTXMAG.

,.a
'.- -**_''~- , r - 1%

FILE: MEGA2 FULL Al FTD COMPUTING FACILITY

153
FFTY NAG.
TyxMAG : SIGNAL-TYPE;

TyxStM MEDIANTYPE;

SINALSIZE.
TRIALS.
SEED 1.
SEED2.

I : INTEGER;

OUY REAL;
DATE.
TIME ALFA;
CH : CHAR;

to procedure SORT

(* This procedure is used to soft an array of SIZE elements into e)

(order. It ts found mere at the beginning of the program since *)
(* It Is us"d In both the CALCULATE procedure (in FILTER) to sort *)

(te elements of the TIME1E1GHT_ARRAY into order so that the)

(gain factor may De calculated and in the MEDIAN AND PRINT)

(* procedure to sort the 5OO elements of the transfer function at)
(each of 2 oints.)

procedure SORT (SIZE : INTEGER;
var SORT-ARRAY SIOAL-TYPE);

var

A.
I.
J :INTEGER;

ORDER SIGNAL-TYP; S.

beg in

for I :0 1 to SIZE 00
OROER(.I.) :a 0.0.

ogRR11(.1.) a, SORTARRAY(.I.);
for I :a 2 to SIZE do

If SORT ARRAY(. I .) - OO1(.1.) then

beg in
for A :a (I-I) dOvntO I do

OROER(A-t) !a ORDER(A);
ORDER(.1.) :a SORTARQAY(.I.):

end
a

beg in

wnile (ORDER(dJ) <, 0) and (SORT ARRAY(.I.)
* 1; ORO1R(.J-)) do

for A .- (1-1) 6ownto J do V
OROER(A.) :a OROER(A);

OROER(J .J) :o SORT ARRAY(.1,);
end;

for 1 :8 1 to SIZE do
SORT ARRAY(.I) *• ORDER(I.I);

end;

toprocedure M4AXEDATA 6
(0 0)

(o This procedure generates the Input sequences to be filtered o)

t.n

(*-~ Suny ..ffre. i* n *,.r-3*or.lt.-* -r po811oontt11 * ..5.

FILE: MEA2 FULL Al FTD CONPUTING FACILITY

154
(* lprooe . They ore outlIned in the fI rat iart Of the iIn bI M) -
(* of this proee e.)

peoedIure MAKEDATA (war SIONAL SIQNAL TYPE);

cenet

PX e 3-141S23086
flAX_NUi_SAMPLES - 1024;

war

A. %

U. %,'

a. %1
0.
X.

INITIALVAL.
SIGMASO.Il
LEVEL.

IMPULSE VALUE.
STEP OFIrSET.
NOIS _AMPLITUOE REAL;
AmE.

PILE _CHOICE,PIE..

CHOICE.
START Palo.
STOP Ito.
STARf SAW.

sioiAMP.
NSTEPS.
IGN INTEGER.;
DoN 1ICOLEA";
DATA-SAMPLIS : TEXT;

0 functi on SON))

•* This function returls the sign Of the TEST VALUE. This)
• is net available as an intrinsic Pascal function.

function SON (TEST VALUE : REAL : INTEGER;

b.U ifn

SON : 1.
if TEST VALUE 4 0 then

SON :• -1;

and.

begin 1* of MAKEDATA *1

CMS('CLRSCnN'.I);
repeat

Writeln('HOw many samples to take (1024 recommended)?');
readln(NUMSAMP);
if (NUMSAMP 2 MAXNUMSAMPLES) or (NUMSAMP < 1) then

writaln('The number of samples must be Detween I and 4096');
until (NUMSAMP) 0) and (NUMSAMP <- MAXNUMSAMPLES);
SIGNALSIZI :* NUSAMP;

L

FILE: MIGA2 FULL Al PTO COMPUTING FACILITY

155
for I :- -31 to 1099 do

SIWOAL(.I.) :8 0.
writeln;
wrttln('UUILD A SIffiAL');

we ltsln('What would you like In it?');
vrtteln(' 1) Constant level');
writeln(' 2) Monotone ramps');
writtln(' 3) Sinusoids');
writolrt(' 4) Steps');
writoln(' 5) Gaussian noise');
writoln(' 6) Laplacian noise'):
writfln(' 7) IIN filter the signl');
writeln(' 8) That''s all'),
reodln(CNOICE);
case CHOICE of '

I :begin (* Constant level
writoln(Wet sihall the constant level be?');
reedln(LEVIL);
If LEVEL 43o 0 then

for I :a I to NUNSAMP do I
SIGNALC .) :* LEVEL.
end;

2 :begin (ramp .
writeln(What is the starting sample for the ramp?');
read1n(START-SAMP):
writln('And the ending sample?');
reeI n(STOPSAMP);
writeln('To whet relative valve should the ramp rise(fall)?');
readin(LIVEL);
INITIALVAL :6 SIGNAL(.STARTSAMP.);
for I :& START-SAMP to STOP-SAM4P do

SIGdAL(.1.) :j, ZIzTZALVAL # LIVEL/abo(STDP -SAMP-STARTSAMP)o

end; (I -STARTSAMP);
and;

3 ;begin (0 sines and blocks of mines *

Writsln('Input frequency of sinusiod ifl 42(0 If group desired)'); 1
reedln(PRIG);
if PRIG t* 0 then
beg in

writeln('starting saisple(0 if all samples)?'); -

readln(START SAMP);
If START SAMP 0 then
beg in

STARTSAMP 1 ;
STOPSAMP :~NUMSAMP;

end
else
beg in

writoln('ending samplel);
readln(STOP-SAMP);

end;
for I :w STARTSAMP to STOP SAMP do

SIGNAL(.I.) :a SIGNAL(.I.) + sIn(2*PI0FREO*I/NUMSAMP);
end

beg in
writeln('What Is the starting fresquency?'); -

reedi1n(START-PRIG);
writoln(Whnat Is the last frequency?');
readln(STOPPRIG);
f or PRIG :a START-PREQ to STOP-PRE0 do

foe I :a I to NUNSAMP do .
SIGNAL(.1.) :a SIGNAL(.I.) + sIn(2PIREQe/NUSAMP).

end;
end;

4 :begin (0 steps and impulses 0)
vritoln(ulow many steps in the signal?');

NO

~' ~lJ. ' % %I V V% ."N *pl

FILE: MGA2 FULL Al FTD COMPUTING FACILITY 156

readln(NUMSTEPS);
for J :e i to NUISTEPS do

beg Iin
writeln('Input the starting sample for step'.J);
redl n(START-SAMP);
vriteln('And the last sample?');
reidln(STOPSAMP);
writeln('And the offset?');
rsdl n(STEPOFFSET);
for I :a STARTSAMP to STOP SAMP do

SIWNL(.I.) :a SIGNAL(.I.) * STEP-OFFSET:
end;

end.

5 : begin Gaussian noise ")
writeiln('What shall the noise sigma Squared be (gaussian diet.)?');
writeln('Sigm squared?');
readln(SIGMA SO);
for I :* I to NUNSAMP do

begin
U : rando(0);
S: sqrt(-2.O* SIGMA_SQ ln(U));

U :a random(0);
0 :2 2.0 0 PI " U;
X :* a G €os(O);
SIONAL(.1.) :8 SINAL(.I.) + X;

end.
end;

* begin (* Laplacian(impulsive) noise*)
wrtteln('What shall the probability Of an impulse be?');
reodln(PUOUIMP);
if PWOSIMP 2 0 then
beg in
writeln('Oo you went 1) all positive impulses or 2) both negatiVe'.

Iand positive impulses.');
resdin(SIGN);
if SIGN 2 then

SIGN : -1;
writeln('What shall the impulse standard deviation be?');
readiln(IMPULSE VALUE);
for j :8 1 to NUNSAMP 0

beg in
U :0 ranom (O);
If U 40 PROSIMP then
begin

U : random(O);
X :• -(IMPULSEVALUE/Sqrt(2))0ln(I-U);
SIGNAL(.J.) : SIGNAL(J.) - X * SGN(ranlom(O)*

(0.5 a SIGN));
end;

end;
end.

end.

7 begin (* simple IR low pass filter*)
writeln('What is the parameter ALPHA?'):
readin(A);
for : a NUMSAMP downto 2 do

SIONAL(.I.) :0 AeSIGNAL(.I-I.) SIGNAL(.I.);
end;

DONE :, true;

OTHERWISE (do nothing
writeln('Tht is not an option');

end; of case itatement

CMS('CLESCIN'.1);

,,."

FILE: NEGA2 FULL Al FTD COMPUTING FACILITY

157
until DONE;

and; of MAKEDATA

procedure WINDOW

(S This procedure windows the irut data to the filter with the 5)

(Blackman window. This window i given by

w(n) * 0.42 - 0.5cos(2nPi/N-1) * O.Ocos(4nPi/N-1) ")

(a where N-1 is the signal size.)

procedure WINDOW (var SIGNAL : SIGNALTYPE); .

const

PI a 3.14159265358118;

var

MOOIFIER : REAL;
I : INTEGER;

begin

for I :a I to SIGNAL-SIZE do
begin

MODIFIER :a 0.42-0.Scos(25PIOI/SIGNAL-SIZE) 0.O8cos(4*P151/
SIGNALSIZE);

SIGNAL(.I.) :* SIGNAL(.I.) * MODIFIER*
end; .

end;

procedure FREO)

(• This procedure takes the discrete Fourier transform (OFT) of the 5)

(signal given to it. The OFT s implemented by the decimation-in-0)
(• frequency FFT algorithm. 0)
(S ala)OW• ~~l~~ouo~m m~~~mmpmm m mmmm mmmm

procedure FREQ (SIGNAL : SIGNAL TYPE;
var FREOX : SIGNALTYPE);

const

PI w 3.1415926535698;
MAX ARRAY SIZE * 2048;

var

DUMMY,
I.

L.
M.
N.
L.

NV2.
NMI,

IP.
LE.
K INTEGER;

"o~

FILE: MEGA2 FULL Al FTO COMPUTING FACILITY15

LARGEST.
TEST.
LEI1,
URI
U1.
WA.
wI.
TR.
TI.
TMR.
TMI :REAL;
MAG.
PHASE.
Xl.

XI :array(.i. .MAX ARRAYSIE)o EL

(5 function RAISE 5

(s This function raises A to the integer power N. This function is *
(* not Intrinsically available in the Pascal compiler.IN

function RAISE (AIN :INTEGER) INTEGER;

var

TEMP.
I : INTEGER;

begin 5

TEMP :*1;
for I I to N do

TEMP :a TEMP * A;
RAISE :a TEMP;

end:

begin of FREQ

N :a SIGNALSIZE;
for I :e I to N do
beg in

WR.I.) :*SIGNAL(.I.);

end;
M :S 0; (calculate 1M
TEST :& N;
repeat

TEST :a TEST/2;
M :8 M *i;

until TEST Ice 1;
it TEST 4 1 then

for I :a N+I to RAISE(2M) do (length /.2*M. pad with 0 *
WR.I.) :6 0.0;

N :s RAISE(2.M):
for L :~I to M do(calculate P7? *
beg in

LE :*RAISE(2.M*I-L);
LEI :*LE / 2.0;

UI : 0;
VW : cos(PI/LEI);
W1 : -6tn(PI/LEI):
for JI : 1 to round(LEI) do
beg in

for K(:a round((J.-I)/LE) to round(N/LE) do

51 . V K .%UW~ .%\~y

WARMN, IW

FILE: MEGA2 FULL Al FTD COMPUTING FACILITY

159
beg in

I := KOLE*
If I <a N then
beg in

IP :a 1 4 round(LEI);
TR :*XR(..I.) + XR(.IP.);
TI :*XI(.1.) + XI(.IP.);
TUR :nXR(.I.) -XR(.IP.);

TMI :* XI(.I.) -XI(.IPJ);

XR(.IP.) :a TMROUR -TMIwUI;

XI(.IP.) :a TNR*lI TMI~UR:
XR(.I.) :*TR;

end;
end; (0 NEXT KC
TR :0 UROWR -UI*WI;

UI :a UR*WI *UI*VR:
UR := Tm;

end; (0 NEXT JI*
end; (0 NEXT L)
NV2 :a N div 2;
NMI :w N-1;
jI :8 1;
for I :a Ito NMI do
begin

ifIt 1 4 then
begin

Tm :
XR(.I.) :*XR(.iJ.);
xR.J.) :.Tm;
TI := WI.I.);

XI.J.) aTI;
end;
9 :a NV2;
while K < JI do
beg in

UJ J9
K :*K div 2;

end;
ti :0 1J+e;

end; (0 NEXT 1 0)

for 1 :6 1 to N do (0 calc sag Sphase of DFT *
beg in

UAG(.I.) :6 sQrt(9qr(XR(.1.)) *sqr(XI(.I.)));
PNASE(.I.) :8 0.0;
if XR(.I.) <> 0.0 then

P1NASE(.I.) :w rtnX(I)X(I) * ISO0 PI;
if XE(.I.) < 0.0 then

if WI.I.) 3. 0.0 then
P1HASE(.I.) :*180 *PHASE(.I.)

en. PHASE(I.) :*-iS00 PHASE(.I.)

for I :8 1 to SIGNAL-SIZE do
FREOX(.1.) :a NAG(.I.);

endm(of FRIG

(a procedure FILTER *

Purpose :This program was designed to i mplemswent a generalI i zed*
digital filter according to %he following scheme.

Once a window size has been chosen the user is asked to
supply the requested weighting values or conoose a

AL h' *,pEI -. *- P

FILE: MEGA2 FULL Al FTD COMPUTING FACILITY

160
C' predefined got for either the time or rank weights.

C'time ordered -----------
Ceinput --;,- I I ... I'I

t' T t T.. t '
CeA(1)-O -0 -0... .A~n)-O '

I SORT I'

C' (1-0 -O -0... .U(n)-O '

+I ... + -output '

C'The procedu.re then opens the external data 0)
IF file Where the Values Of the Samled 0)

C'signa) to be filtered are and initializes the window. ')
C' Initializing consists of filling the first vnalf of te)
C'window with the first data value and then reading in ')
C'subsequent values until the window in filled. Next *)
athe window is weighted by the W() set of coefficients e)

The wino is then rank ordered. After this the 0)
C'second set of coefficients are applied which trio off %
C' the smallest and largest values Of the dote '
C' After this last trimming the remaining son1es are '
(C summed and gain adjusted. Finally, the '
C'wino is stepped over one value in time by deleting e)
C'the oldest value am inserting the now value in the 3 a

proper rank order. The filtering a&M stepping 0
(Ccontinue until the end of the dote file is reaced 0)

procedure FILTER (var SIGNAL :SIGNAL-TYPE 3

const

MAX WINDOWSIZE a 64;

type '

DATA ELEMENT POINTER a apATAELEMENT.
DATAELEMIEN a record

ACTUAL VALUE REAL;
MOOIFIIO VAL RIKAL.
NEXTLAIEST SATA_1LUfMEN!P01 W6E5
NEXTINTIME DAYT_ ELEMENT PIO INWilt

end.
VEIGNT-ARRAY-TYPE aarray(1. dAX WINOW SIZ1 of 04 AL

war

TEMP areayC 1 1024) Of REAL.
SMALLEST VALUE.
OLDESTVALUE DATA_[LEMENtTPOINTER;
I.%
wRimOW-SIZE INTEGER.
FILTERINPUT.
FILTER OUTPUT REAL;

RANKKiIGNTARRAY W1IGNTARQ4VTYPE;

Ipoceeejr* GET PaINAMETERS 0)

(0 VV

FILE: MEA2 FULL Al FTD COMPUTING FACILITY

161
(0 This procedure returns the user input parameters that will be a)

used during the program run. a)
(- ,)

--)
procodre GET PARAMETERS (var WINDOWSIZE : INTEGER;

var TIME WEIQTARRAY WEIGHT ARRAYTYPE;
var RANKWEIGHTARRAY : WEIGHT ARRAY TYPE);

ver

ANS.
CHOICE.
I INTEGER;
CHECK.
VALIOSIZE DOOLEAN;

DUMMY REAL;
COEFF FILE TEXT;

49 procedure MANUAL INPUT
,. .)

(a This preeedure let* the User input the weighting a
ceef9cients to so uee.

- -)

orsoe UANUAL IPUT(war INPUT_ ASAY WEIQHARRAY TYPE;
WIDOW- SIZE INTEGER);

AS INTTEGER;
we? 'p.

w,'tS)nE(livt the 0se " filter CQeffiCieMts.');
for I to~ oe'mWIOWSIZ1/2) CDO

i e'tialei at .1 2.) 7)
PmeuINI INV.ASAvt I)).

one.writi~itis the filter syyintric (1-yee.0-no)?');

fr I a ,"m v1MUIID SZE/2)* to WINDOW SIZE do
&04 0N 0 'to
iVNP_/AAV! I) -INPUT AMAY(WIOOWSIZE - I * i.

onm

wel,l(4 2. P * 7').

S'IaiIlNPUJAU l I) p.

I * -ocedre I &_AL _lT:RIR a)I- a)

t ° off e men Sh * the re weigt array and 0's thee. a)

ermur D .W1l YR1 Ku vet lRA~l I GHTAREfAY V WE IGHT ARRAY.TYPE;

WINDOW-SIZE INTEGER);

WSW

I 'a

* . * ~ ~~ * *~* * . *.*.*'*.* *~*p 5 -*C~PM

FILE: MEGA2 FULL Al FTD COMPUTING FACILITY 162

NUM TRIMMED,
TRIM.
NUMLEFT INTEGER;

begin

writeln('Input how many elements to trim (must be even M))');
readln(NUMTRIMMED);
TRIM :a NUM TRIMMED div 2;
NUMLEFT :- WINDOWSIZE - NUN TRIMMED;
for I :a I to TRIM do

RANK WEIGHTARRAY(.I.) :- 0;
for I :a TRIM+1 to TRI MNUM LEFT do

RANKWEIGHTARRAY(.I.) :a 1;
for I := TRIM NUMLEFT I to WINDOW SIZE do

RANKWEIGHT ARRAY(.I.) :a 0:

end;

(. o)

procedure CALCULATE)
(" °)

(s This procedure calculates the gain factor for the filter
coefficients so that the output is properly scaled.

procedure CALCULATE (var GAIN : REAL;
WINDOWSIZE : INTEGER;
TIME WEIGHT ARRAY : WEIGHT ARRAY TYPE;
RANK WEIGHTARRAY : WEIGHT-ARRAY TYPE);

var

A.
J.
I : INTEGER;
ORDER : SIGNAL TYPE;

begin

for I :a I to WINDOWSIZE do
ORDER(.I.) :a TIME WEIGHT ARRAY(.I.);

SORT(WINDOW SIZE.ORDER);
GAIN :a O.O;
for I :a I to WINDOWSIZE do,6

GAIN :- GAIN + ORDER(.1.) * RANK WEIGHT ARRAY(.I.);

end:

procedure SHOW U)

(* This procedure clears the screen and then provides a list
of the coefficients to the user. a)

procedure SHOW (TIME_WEIGHTARRAY : WEIGHT ARRAY TYPE;
RANK-WEIGHT ARRAY WEIGHT ARRAY TYPE;
WINOOWSIZE : INTEGER);

vet

I INTEGER;

CUISs CglICIW'.2);

Elitel('TIM[COEFF VALUE RANK COEFF VALUE');
Ie*" t *I i o WINDOW SIZE do

mata

FILE: MEGA2 FULL Al FTO COMPUT1NG FACILITY

writeln(' ('.1:2.') 0'.TIMEWEIGTARRAY(,V).12;&.
eno; ' 8('.I:2.') -'.RAMCWEGTARRAY(.I.):12:5);

end.

(S procedure MOOIFY
(S) 4'

This procedure modifies either the whole weight array or
(S Individual coefficient values that the user desires.)

(. ")

procedure MOOIFY (var MOOIFYARRAY : WEIGIT ARRAYTYPE;
WINDOW-SIZE : INTEGERT;

var

I : INTEGER:
VAL : REAL;

writeln('Which element (O-> all elements)');
readln(I);
If I a 0 then
MANUAL INPUT(MODIFYARRAY.WINOOW_SIZE)

else
begin

writeln('What is the new value');
readln(VAL);
MODIFY ARRAY(I.) :a VAL;

end; ,.,
end;

begin (of GET-PARAMETERS 0) V

CMS('CLRSCRN' .); '

writeln;
writeln(This program Implements a digital filter.');
writeln;
repeat
writeln('Input the desired window size(must be an od integer).');

writeln;
read(WINOOW-SIZE);
VALID-SIZE := true;
if not(odd(WINOOWSIZE)) then

begin
writeln('The window size must be an odd integer.,); '
VALID_SIZE :- false;

end;
if (WINDOW SIZE > MAXyINDWSIZE) or (WINOWSIZE 0 0) then

begin
writeln('The size must be positive but less than

MAX WINOOWSIZE);
VALID SIZE :a false;

end;
until VALID SIZE;
for I :* I to WINDOWSIZE do
begin

TIME WEIGHT ARRAY(.I.) :0 0; '
RANK WEIGHTARRAY(.I.) :0 0;

end;

writoln('Would you like to initialize a predetermined filter');
writeln('(i.e. a mean or median filter) or manually input the'):
writeln('filter coefficients?');
wrfteln(' 1) mean filter');
writeln(' 2) median filter'); ti,

writeln(' 3) alpha-trimmed mean filter');
writaln(' 4) alpha-trimmed linear filter');
writeln(' 5) other coefficient Input');

FILE:. W"G2 PULL Al FTO COMPUTING FACILITY

164 '

readin(CHOICE);
CUS(CLMSCION *);
case CHOICE of

I : for 1 :0 1 to WINDOW-SIZE 0o
begin

TIMEWEIGHTARRAYC .1.) :aI/WINDOWSIZE:
RANKW1IGHTAftRAY(.I.) :u1;1or

end;

2: r be I :m I to WINDOWSIZE do

TIMEWEIGHTARRAY(.I.) 1~ ;
RANK.WIGHTARRAY(.I.) : 0.

*ANK._WIglHTAIRAY(.rouna(WINDOWSIZE/2).) :a I;

f3 : beigin SZ

fo 1~ I to WINIDOW SIEo
TIME WEIGHTAURAYT~i.) :- I.

)OALP'A_1iIM(RIANKWE 4TAnRA Y. WINDOWSI ZE):

CALCULATE(GAIN.WINDOW SIZETIMEWEIGH4TARRAY.RANKWEIGHTARRAY);
for I :3 I to WINDOW IZE ft

MANKWEIGMT - UIRAYT. I.) :- RAt4CWEIGHTA4RAY(.I.)/GAIN;

4; begin

CMS(CLISCON'.1);
writeln;i

writeln('Alphe-trtmmied linear filter');
wri ton;
writoin(Are the desired filter coefficientts svdtysOn))
reealn(ANS);
if ANS m I then
begin

for 1 :8 1 to WINDOWSIZE do
roadln(COEFF-PILE.TIMEWIG4T-ARAY(.1.)): 4k

end

egin
CMS(CLRSCRN .1);
MANUAL INPUT(TIMEWEIGHTARRAY WINDOWSIZE); '
writeln(Do you want to save this set (1-yes.O-no)?7);
reedln(ANS).
If ANS a I then
beg in

rewrite(COEFFFILE. nm~uFIR.CE.*):
for I :a I to WINDOWSIZE do

writeln(COEFFPPILE.TIMEWEIGHTARRAY(.1.)):
end;

end:

COS('CLASCEN' *);
OO.ALPH4A.TRIM(RAW_.WEIGHTARRAY .WINDOWSIZE);

CALCULAT(GAIN. WINOOWS Ill TIMEWEIGT.ARRAY .RANK WEIGHTARRAY);
writeln(IThe gain for this set of coefficients is' .GIN:7:4.

Iand the rank,);
writeln('weighting coefficients have been divided by It.');
for I :m I to WINDOW SIZE do

RANK WEIGHTARRAY?. I.) :- RANK.WEIGHTARRAY(..)/GAIN;

end;
5: begin

W ritoln('Are the desired filter Coefficients saved(I-yes.O-ne)?7);
readin(ANS);
if ANS *I then

Lam %. %

FILE: MEGA2 FULL Al FTO COMPUTING FACILITY

165
beg in

reset(COEFF-FILE.'name-FIR.COEFF.*');
for I := I to WINDOW SIZE do

readln(COEFFFILE.TIME WEIGHTARRAY(.I.));
endelse
begin

CMS('CLRSCRN' .);
writeln;
writeln('Now tnput the '.WZNDOW SIZE:2.' weight parameters for the');
writeln('time ordered buffer');

MANUAL INPUT(TIME. WEIGHT ARRAY.WINDOWSIZE);
writeln('Do you want to save this Set (i-yes.O-no)?');
roadln(ANS);
if ANS a I then
begin

rawrite(COEFFFILE.'name-FIR.COEFF.*');
for I :6 1 to WINDOW SIZE do

wrlttln(COEFF-FILE.TIMEWEIGHTARRAY(.I.));
end;

end;

CMS('CLRSCRN',I);
writeln;
writoln('Now the same thing for the rank ordered buffer');
MANUAL INPUT(RANK WEIGHT ARRAY,WINDOW- SIZE);

CALCULATE(GAIN.WINDOWSIZE.TIME_ WEIGHT ARRAY.RANK-WEIGHTARRAY);
for 1 :0 1 to WINDOWSIZE do

RANKWEIGHTARRAY(.1.) :8 RANKWEIGHTARRAY(.I.)/GAIN;

end;

ond; of case statement *)

writeln('Would you like to see the coofftcients(l-yes.O-no)?');
readln(I);
If I a I then
SHOW(TIME WEIGHT ARRAYRANKWEIGHT ARRAY.WINDOW_SIZE);

writeln('Would you Ilke to change anything(I-yes.O-no)?');
readln(ANS);
while ANS s I do
begin

writoln('Which not of coefficients i->time. 2->rank');
readln(CHOICE);
case CHOICE of

I MODIFY(TIME WEIGHT ARRAYWINDOWSIZE);
2 : MODIFY(RANK WEIGHTARRAY.WINDOWSIZE);

end;
SHOW (TIMEWEIGHTARRAY.RANKWEIGHT ARRAY,WINDOW SIZE);
writaln('Change anything else(I-yes.O-no)?');
readln(ANS);

end;

end; (of GET PARAMETERS *)

(a--)

procedure INITIALIZE *)

(. This procedure initializes the buffer window by reading the *)
first data value and using it to fill the first half of the)
window and then filling the rest of the window with the 4)

subsequent data values read out of the data file. 4)

(a--)

procedure INITIALIZE (WINDOW-SIZE : INTEGER;
var OLDEST-VALUE : DATA-ELEMENT-POINTER);

var

FILE: MEGA2 FULL Al FTO COMPUTING FACILITY

166
ELEMENT.
NEXT-ELEMENT :DATAELEMENT POINTER;
I.
Dummy.
MIDDLEOQFINDOW : INTEGER;

begin (~ of INITIALIZE *

new(ELEMENT); C'allocate dynamic variable *
OLDEST-VALUE :s ELEMENT;
MIDDLEOF WINDOW :a round(WINDOW SIZE/2); (0 find middle Of windw.
ELEMEN1*.ACTUAL VALUE :- SIGNAL(. i-MIDDLE OF WINOOW'l.);

for I :a 2 to WINDOWSIZE do (0 road in 0Ia
begin (*for last half of window *

new(NEXT-ELEMENT);
NEXTELEM4ENTO.ACTUAL-VALUE :n SIGNAL(.1-MIDDLE-OFWINOWl.);
ELEMENTO.NEXT IN TIME :a NEXTELEMENT;
ELEMENT :* NEXT-ELEMENT;

and;

end; (*of INITIALIZE *

--

(8 procedure WEIGHTTIMEUBUFFER

This Procedure Weights each of the elements in the time aored *
buffer by the user input values stored In the TIMEyWEIGHT-ARRAYO)

--- a
procedure WEIGHT-TIMEBUFFER (WINDOW-SIZE :INTEGER;

OLDEST VALUE :DATA ELEMENT POINTER:
TIME WEIGHTARRAY :WEIGHT ARRAYTYPE)

var

I : INTEGER;

ELEMENT :DATA ELEMENT-POINTER:

begin

ELEMENT :*OLDEST-VALUE;
for I :a I to WINOOWSI do

begin
ELEMENTO.MODIFIEOVAL :a ELEMENTO.ACTUAL VALUE

TIMEWEIGHT ARRAY(.1.);
ELEMENT :w ELEMENTO.NEXT IN TIME;

end.

end;

C---)

(S procedure RANK-ORDER *

Cs This procedure takes the window that has been modified by thC *
time weights & uses an insertion sort to rank order each of the*)

(3 elements. At the end of this procedure each element in the)
C' window Is ordered by size of the value as well as in time. *

-- a

procedure RANK-ORDER C WINDOW-SIZE :INTEGER;
var OLDEST-VALUE :DATAELEMENTPOINTER;
var SMALLEST-VALUE :DATA ELEMENT PaINTER);

var

ELEMENT,
NEW-ELEMENT :DATA ELEMENT-POINTER;
I :INTEUER;

FILE: MEGA2 ULL Al PTD COMPUTING FACILITY16

begin (0 of RAMCOROER

SMALLEST-VALUE :4 OLDEST VALUE; (0 start with first value an *
SMALLEST VALUE*.NEXTLAR1EST :8 nil.. (0 sallest and Insert eachi*
NEW ELEMENT :- OLDESTVALUE*.NEXTINTIME; (0 let new valu to inert*)
for I :a 2 to WINDOW-SIZE do (*loop thr*ough each Value 0)

begin (6Check If new valu4'sealet6)
ELEMENT :@ SMALLEST VALUE; (8 value in order
if NEWE[LEMENT* MOOTFIEDVAL < SMALLESTVALUEO.MOOIPIEDyAL

then begin
NEWERLEMENT.NEXTLARGEST :6 SMALLESTVALUE;
SMALLEST-VALUE :e NEWELEMENT;

end
0184e (0 else find proper order *

beg in
while (ELEMENTO.NEXT LARGEST 4), nil) and

(N1WE1L1MENT0.MOCIFPIEOVAL 2,
ELEMENTO.NEXT LARGESTO.MOOIPIEDVAL) do

ELEMENT :- ELEMENTO.NEXTLARGEST;
(o and insert in place *

NEWEtLEMENT0.NEXTLARGEST :e ELEMENTO.NEXTLAR0gST;
ELEMENTO.NEXTLARGEST :a NEWELEMENT;

end;
NEWE[LEMENT :~NEWELEMENTO.NEXT IN TIME; (0 then go on to * ,

end; i- insert next einunt in order-)

end;.(of RANW ORDER 5

---)

6procedure WEIGNTRANKSUFPER A.

(S This procedure weights each of the elements in the time odered 6

(. buffer by the user input values stored in the TIME-WEIG4T-ARRAY-)

(---*
procedure WEIGHTRANK SUPPER (WINCOWSIZE : INTEGER;

SMALLESTYVALUE : DATAEFLEMENT-PONTER:
RANK WEI&4TARRAY WEIGHTARRAYTYPE)

var

I :INTEGER; %9
ELEMENT DATA-ELEMENT-POINTER;

beg in

ELEMENT :*SMALLEST-VALUE;
for I :a I to WINDOW-SIZE do

beg in
ELEMENTV.MODIPIED-VAL :s ELEMENTP.MOOIFIEO VAL

RANW-WE IGHTARRAYT. I .)
ELEMENT :a ELEMENTO.NEXTLARGEST;

end;

end;

--)

(5 procedure FILTER N 5

This procedure finds the middle value of the time sequence.)
(S which Is the input to the filter. and sums the values of the)

order sequence, the filter output, and sends the two values *
(5 back to the main program to be stored in a graph file. 5

(--

procedure FILTER_ (WINDOW-SIZE INTEGER;
var OLDEST-VALUE DATA-ELEMENT-OINTER;

FILE: MEGA2 FULL Al FTD COMPUTING FACILITY

168
var SMALLEST-VALUE : DATA-ELEMENTPOINTER;
var FILTER -INPUT REAL;
var FILTER-OUTPUT REAL);

var

MIDDLEOF WINDOW INTEGER;
INPUTELEM4ENT.
OUTPUT-ELEMENT DATA-ELEMENT-POINTER;

beg in of FILTER-M

MIDOLEOF WINDOW :a round(WINDOW-SIZE/2);
INPUT ELEMENT :*OLDEST-VALUE;
OUTPUTELEMENT :*SMALLEST-VALUE;
FILTER-OUTPUT :& 0;
for I :a I to WINDOW _SIZE do (~step thru window to calc*

begin ('output
fIt 1 MIDOLEOFWINDOW then (*filter input Is middle val*)

INPUT-ELEMENT :a INPUT-ELEMENTC .NEXT IN TIME;
FILTEROUTPUT aFILTER-OUTPUT + OUTPUTELEMENTO.MOD!FIED VAL;
OUTPUTELEMENT :~OUTPUTELEMENTO.NEXTLARGEST;

end;
FILTER-INPUT :a INPUT-ELEMENTO.ACTUALVALUE; d

gri;.(of FILTER-M

--)

(a procedure STEP-ONE a

Step the window over one data value by deleting out the oldest *
value from the time sequence and then creating a
a new dynamic variable, reading Ini Its new value, anid

(a inserting it at the end of the time sequence. a

(--)
procedure STEPON1 (var OLDEST-VALUE : DATA-ELEMENT-POINTER;

NEXTVAL :INTEGER:
WINDOW-SIZE : INTEGER);

ver

IJ.
DUMMY : INTEGER;
ELEMENT.
TARGET-ELEMENT : DATA ELEMENT POINTER;

begin (aof STEP-ONE a

delete oldest value from window

TARGET-ELEMENT :s OLDESTVALUE;
OLDESTVALUE :a OLDESTVALUEO.NEXTINTIME; (0 delete from time seqe)

colopose(TARGETELEMENT); (do-allocate dynamsic varbl *

(0 * 0 put new element into window **06

rew(tLEMEN');
TARGET-ELEMENT :w OLDESIVALUE; (*start at beginning to find*)
for 4J :a I to (WINOOW-SIZE-2) do (0 the most recent Vovalue

TARGET ELEMENT :am TARGET ELEMENTO.NEXT-IN-TIME;
TARGET ELEMENT@.NEXTINTIME :- ELEMENT; (* add new value)
ELEMENTo.N1XY IN TIME :a nil; (e and put nil value on end)
ELEMINTO.ACTUAL VALUE :*SIGNAL(.NEXTVAL.)

end; (6 of STEP-ONE

SU mS
%

11 .

ILE: MGA2 ULL Al FTD COMPUTING FACILITY 169

begin (* of FILTER - MAIN PROGRAM 1)

GETPARAMETERS(WINDOW SIZE.TIMEWEIGHT ARRAY.RANK..EIGHT ARRAY);
INITIALIZE(WINOW SIZE.OLDESTVALUE);
for I :a I to SIGNAL SIZE do
eg in

WtIGHT TIME BUFFER(WINDOW SIZE.OLDESTVALUE TIME WEIGHT ARRAY);
RANK OROER(WINOOW SIZE.OLDESTVALUE.SMALLEST VAUE); -
WEIGHTRANK -SUFFEI(WINDOWSIZE.SMALLEST VALUE.RANKWEIGHT ARRAY);
FILTER.M(WINDOO SIZE, OLDEST VALUE.SMALLEST VALUE.FILTERIJNPUT.

FILTER OUTPUT);
TEMP(.I.) :a FILTER OUTPUT;
It 1 c> SIGNAL SIZE then

STEP ONE(COLDESTVALUE.(I+roun(WINOOWSIZE/2)).WINDOWSIZE);
end;
for I :a I to SIGNAL-SIZE do

SIGNA(.I.) :a TEMP(.I.);

end; (of FILTER - MAIN PROGRAM *)

procedure TRANSANDSTORE

(* This procedure takes the transfer function of the filter by °)
(o dividing the magnitude of the OFT of the output of the filter)
(* by the magnitude of the OFT of the input to the filter. This
(o result Is then stored for the number of trials attempted so
(* that the Individual transfer function of each trial In
(* remembered for further processing. a)

procedure TRANSANDSTORE (FREOX. FREQY : SIGNAL TYPE;
var TyxSUM : MEDIAN TYPE;

TRIAL : INTEGER T;

war

I INTEGER;
FREOT : REAL;

begin

for I :I to SIGNAL-SIZE div 2 do
begin

FREOT :e FREQY(.I.)/FREQX(.I.);
TyxSUM(.I.TRIAL.) :s TyxSUM(.I.TRIAL.) 4 FREOT;

end;

end;

(eaOOaaOOOsOOOaOO..sOeOsOO..O..aO00°OaOO.a.O.as.O.asa..sOa.....O°......)

procedure MEDIANANO_PRINT a)

(a This procedure sort@ the data of the previously calculated
(o transfer functions on a point by point basis. The median value o)
(o of each point is selected as the output of the filter and stored *)
(° In a file for further graphing. a)

procedure MEDIANANDPRINT (ORDER ARRAY : MEDIAN TYPE;
TRIALS : INTEGER);

var

FILE: MGA2 FULL Ai PTD COMPUTING FACILITY

170
Tyx SIGNALTYPE;
ANS.
NUN.
INDEX.
INDEX2.
INC.
T INDEX.

I INTEGER;
TVALUE,
LARGEST T.
NON T : REAL;
FILE! : TEXT;

function LOG

(This function calculates the bae 10 logarithm of X. The Pascal *)
(* compiler only provides the natural logarithm as an intrinsic

• function. The base 10 logarithm is calculated by

I O X a In Xa)

In 0 o)

function LOG (X:REAL):REAL;

begin P
Itf X 0.0 then

X :* 0.00000001;
LOG :a ln(X)/In(IO.0);

end;

begin (* of MEDIANAND-PRINT

INDEX :s SIGNAL_SIZE div 2;
INOEX2 :a SIGNAL_SIZE;
for I :a I to INDEX do (sort each point of Tyx 0)

beg in
for j :a I to TRIALS Go

Tyx(.J.) :a ORDER ARRAY(.I.J.);
SORT(TRIALS.Tyx);
for J :e I to TRIALS do

ORDERARRAY(I.mJ.) :• Tyx(.J.);
end;
for I :* I to INDEX do (o choose median as response*)

Tyx(.1.) :a OROERARRAY(.I.round(TRIALS/2).);
readln(ANS);
If ANS a I then
begin

LARGESTT :a Tyx(.1.);
TVALUE :a LARGESTT;
TINOEX :* 1;
for I :a I to INDEX do (a find largest value of Tyx 0)
begin (o for normalization

LARGESTT :a max(LARGESTT.Tyx(.I.));
If LARGESTT <, T_VALUE then
beg in

T_INDEX :1 I;
TVALUE : LARGESTT;

end;
end;
NORN.T :* 0;
INC :a round(INOEX • 0.02); (o choose Interval around *)

NUN :a 0; (* largest value for normallzo)
for I :a max(1TINDEX-INC) to min(T IN0EX-INC.NZNEX) do
begin (S calculate norm factor *)

NOUN.T :a NORMT + Tyx(.I.);

'IV

FILE: MEGA2 FULL Al FTO COMPUTING FACILITY
171

NUM : NUM 1
end;
NOWMT :,m NORM T/NUM;
for I :0 1 to INDEX do (0 normalize Tyx

Tyx(.1.) :a 20*L0G(Tyx(.I.)/NORw-T);
end;

rewrite(FILET. 'naSUMSOTRANS.POATA.*');
for I :a I to INDEX do

end;

procedure AVERAGEANDPRINT e

(S This procedure averages the date of the previously calculated *
(a transfer functions on a point by point basis. The average value *
(* at each point is calculated the output of the filter and stored)
(5 in a file for further graphing.

procedure AVERAGEANOPRINT (AIR MEDIAN TYPE;
TRIALS INTEGER)

var

TyxS :SIGNALTJYPE;
ANS.
NUN.
INDEX.
INDIX2.
INC.
T INDEX.
J7.
I INTEGER;
TVYALUE,
LARGESTT.
NORM-T REAL;
FILET TEXT;

(5 function LOG

(a This function calculates the base 10 logarithm of X. The Pascal C
(5 compiler only provides the natural logarithm as an intrinsic 5
(5 function. The base 10 logarithm is calculated by 5

log X * In X 5

(5 ln 10

function LOG (X:REAL):REAL;

beg in
if X a0.0 then

X :*0.00000001;
LOG :a ln(X)/ln(IO.0);

bgin (5of AVERAGE AND PRINT 5

INDEX2 :SIGNALSIZE;
ofor I :*I to INDEX CIO

FIB~

FILE: MEGA2 FULL Al FTD COMPUTING FACILITY17

begin (a average eeh point to
TyxS(.1.) :. 0.0; (0 calculate Tyx a
for 4I :- I to TRIALS do

en;TyxS(.I,) :0 TyxS(.I.) *ARR(.I.J.);

readln(ANS);
It ANS - I then
begin (.choose largest value of *

LARGEST T :* TyxS(.1.); (a Tyx to normalize
? VALUE-:a LARGESTT;
TINDEX :a 1;
for I :a I to INDEX do
beg in

LARGESTT :- max(LARGEST.T .TyxS(.I.));
If LARGESTT <3 7 VALUE then
begin

T INDEX 1m ;
T -VALUE :mLARGESTT;

end;
and;
NORMT :- 0:
INC :a round(INDEX 0 0.02); (Scalculate normalization *
NUM :a 0; (a factor over range near max-)
for I :- max(I.TINDEX-INC) to uin(TJNDEX+INC.INOEx) do
beg in

NORMT :a NORM? T y_(1)
NUN 'ToNUNM+ IT

end.
NOW T a NDRKT/NUM;
for T : I to INDEX do (a normalize Tyx

ed TyxS(.1.) :a 20OL0G(TyxS(.I.)/NORMT);

else
for I :a I to INDEX do

rewrlte(FILET. 'name-SUMTRANS.PDATA.*');
for I :0 1 to INDEX do

writeln(FILET.(I/INOEX2):10:8.1 *Tyx..S(.1.));

endl;

beg in (* of MEGAMEDIAN a

tormout(OUTPUT);
reset(INPUT. 'nameSTRIALS.MEGA.851;
readln(TRIALS);
deatime(OATE.TIME);
readetr(str(TIME),1:2.CN.SEEDI :2.CH.SEEO2);
I :0 IOSEED1*SEED2+1+SEEDI+SEED2;
DUMMY :a random(I);
SIGNALSIZE :a 256;
for I :a I to TRIALS do
begin

reset(INPUT. 'nameulNOAlA.MEGA.3');
MAKEDATA(SIGNAL);
WINOOW(SIGNAL);
FREO(SIGtAL,FFTXMAG);
FILTER(SIGNAL);
FREO(SIONAL.FFTY-MAG);
TRANSANDSTORE(FFTX-MAG, FFTY NAG. TyxSUM. I);

end;
MEDIAN ANDOPRINT(Tyx_SUM.TRIALS);
AVERAGEANOPRINT(TyxSUM. TRIALS);

end. (a of NEGAMEDIAN a

w w ~ =-WIER

A tri

F1 1 =v

